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§1 Introduction

Let’s look at a simple example. Let f(x, y, z) = x cos z + y sin z, and c a constant. Consider the
surface Sc = f−1(c). Since f ′(x, y, z) = (cos z, sin z,−x sin z+y cos z) ̸= 0, Sc is indeed a manifold.

The main motivation of differential manifolds is that we want to apply calculus on manifolds
like Sc, like we did in differential geometry for curves and surfaces.

Some more examples are RP 2,CPn, we can’t do calculus on them by taking coordinates on
them, hence we developed a new theory called differential manifold.
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Geometry III 2 DIFFERENTIAL MANIFOLDS

Example 1.0.1

The complex projective space CPn is defined as all the 1 dimensional complex linear subspace
of Cn+1, the elements can be written in homogenous coordinates z := [z0, z1, . . . , zn].

The atlas contains n+ 1 charts:

Uj := {z ∈ CPn : zj ̸= 0}, φj : Uj → Cn.

Where

φj(z) =

(
z0
zj
, . . . ,

ẑj
zj
, . . . ,

zn
zj

)
.

Here â means a is omitted.

§2 Differential manifolds

§2.1 Basic definitions

Definition 2.1.1 (Differential manifolds). Let M be a Hausdorff space, {(Uα, φα)}α∈A be an
atlas, satisfying:

• {Uα}α∈A is an open covering of M .

• ϕα : Uα → Vα ⊂ Rn is a homomorphism, Vα is an open set;

• ϕαβ : ϕα(Uα ∩Uβ) → ϕβ(Uα ∩Uβ) are C
r functions. They are called transition functions,

this condition is called the compactibilty of charts.

We say M is a Cr differential manifold or just differential manifold if it’s given a such
atlas.

Definition 2.1.2 (Maps between manifolds). Let M,N be Cr differential manifolds.
We say a map f : M → N is Cr if for all p ∈ M , suppose p ∈ Uα, f(p) ∈ Wβ , we have

ψβ ◦ f ◦ ϕ−1
α is Cr at ϕα(p).

Note that ψβ ◦ f ◦ ϕ−1
α is just a map in Rn, so we can talk about differetiation of it.

We say M and N are Cr homeomorphic if there’s a bijective map f : M → N , and f, f−1

are both Cr maps.

Note that since f(Uα) may not be a chart in N , actually we need to take a neighborhood of p
and discuss things in this neighborhood.

To avoid this annoying argument, we define a maximal atlas to be the atlas which contains
all the compatible charts. Any atlas can be extended to a maximal atlas, and the maximal atlas
is called a Cr structure on M .

Example 2.1.3 (On maximal atlas)

Let X = R, U1 = R, ϕ1 : R → R by ϕ1(x) = x. Let U2 = R, ϕ2 : R → R by ϕ2(x) = x3.
We can see that {(U1, ϕ1)} and {(U2, ϕ2)} are not compactible, so they are different atlas.

Extending them to maximal atlas, we’ll get two different smooth structures on X. But they
are differential homeomorphic by x 7→ x

1
3 . (ϕ2 ◦ f ◦ ϕ−1

1 (x) = x)
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Geometry III 2 DIFFERENTIAL MANIFOLDS

Remark 2.1.4 — You might hear somebody say that “there is only one smooth structure on
R”, this usually means “up to a differential homeomorphism”.

(By the way, Riemann first states the concept of manifolds)

Remark 2.1.5 — Sometimes we also require C2 or quasi-compact on the base space. In
different cases, the transition function might be required as piecewise linear / smooth etc.

In this course we assume the dimension of a manifold is finite and fixed.

§2.2 Tangent vectors and tangent spaces

In multi-dimensional calculus, we studied the integral and differentiations, also we studied the
calculus of vector fields, including gradients, divergence and curl. We learned some relations like
curl grad f = 0⃗, div curl F⃗ = 0. At last, we learned Stokes’ formula, which we’ll generalize it to
manifolds in this course.

Definition 2.2.1 (Tangent vectors). You can think of this definition intuitively as “The equiva-
lence calss of tangency of parametrized curves”.

Let γ : (−ε, ε) →M be a parametrized curve. We say γ is smooth if for any chart (U, ϕ),

ϕ ◦ γ : (−ε, ε) → Rn ∈ C∞.

Define the equivalence relation γ1 ∼ γ2 on point p to be

γi(0) = p, (ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0),

for all charts (U, ϕ) where p ∈ U .
We call the equivalence class of ∼ a tangent vector at p. Denote all the tangent vectors at p

by TpM .

Proposition 2.2.2

The tangent space TpM is a vector space.

Proof. Let [γ1], [γ2] ∈ TpM , for a chart (U, ϕ) where p ∈ U , WLOG ϕ(p) = 0 ∈ Rn.
Let

γ̃ := ϕ−1(ϕ ◦ γ1 + ϕ ◦ γ2) : (−ε, ε) → U ⊂M.

We can check that [γ1] + [γ2] := [γ̃] is a well-defined addtion, i.e. independent of charts and
representatives.

Similarly we define c[γ1] := [ϕ−1(cϕ ◦ γ1)] as scalar multiplication. Indeed this two operations
give the structure of vector spaces.

You can also think of tangent vectors as directional derivatives: Let f ∈ C∞(U), v = [γ] ∈ TpM ,
γ = γ(t). Define

v(f) :=
d

dt
(f ◦ γ)

∣∣∣
t=0

.

Since tangent vectors form a vector space, this “directional derivative” has many properties in
common with those in Rn, such as (v1 + v2)(f) = v1(f) + v2(f).
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Definition 2.2.3. Let f :M → N be a smooth map. There is an induced map

f∗ : TpM → Tf(p)N

[γ] 7→ [f ◦ γ]

called tangent map, it’s a homomorphism of vector spaces. It’s also denoted as df .

Remark 2.2.4 — For all charts (U, (x1, · · · , xn)) at p, we can write a basis of TpM , say(
(ϕ−1)∗

∂

∂x1
, . . . , (ϕ−1)∗

∂

∂xn

) ∣∣∣
p

At p and f(p), we can write f∗ as a matrix with respect to the coordinate basis, this
matrix is precisely the Jacobi matrix of f when f is a map between Euclid spaces.

Strictly, ∂
∂xi

is the tangent vector of γi : t 7→ (0, . . . , t, . . . , 0) at 0, where t is on the i-th
entry. It’s an analogy of partial derivatives in Rn, so they only exist in a coordinate system.

§2.3 Vector fields

Definition 2.3.1 ((Tangent) Vector fields). Let M be a manifold, we say X : M → TM is a
(tangent) vector field if X|p ∈ TpM , and for any chart (U, x1, · · · , xn) we have

φ ◦X = v1
∂

∂x1
+ · · ·+ vn

∂

∂xn
.

Where v1, . . . , vn ∈ C∞(U).
Denote all the vector fields on M by X (M).

We can see that X (M) is a vector space on R with infinite dimensions.
A vector field can be imagined as the “speed” of each point, if the points are moving according

to this speed, we can get transformations on the manifold, with one parameter corresponding the
“time”. This operation is very similar to the integral when solving ODE.

To state these ideas mathematically,

Definition 2.3.2 (One-parameter transformation group). An one-parameter transformation
group on M is a collection of smooth homeomorphisms

ϕt :M →M, t ∈ R

where ϕt is smooth with respect to t. (View this in charts or as a smooth map M × R →M)
The group operation is given by ϕs · ϕt = ϕs+t.
We can also think of ϕ as a group homomorphism R → Diffeo(M).

Such groups will induce a vector field on M ,

(X
∣∣
p
)(f) :=

d(f ◦ ϕt)
dt

∣∣∣∣
t=0

.

It can be thought of “infinitesimal one-parameter transformation”.
Since the transformations might be wired when t gets large (like vortex in the sea), we define

the local one-parameter transformation group to be

ϕ :W × (−ε, ε) → U, W ⊂ U ⊂M

where W,U are open subsets, and only require ϕs+t = ϕs · ϕt inside (−ε, ε).
Similar to the local solution of ODE, we have:
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Proposition 2.3.3

For each X ∈ X (M) and p ∈M , there exists open neighborhoods W ⊂ U and a local ϕt s.t.
the vector field induced by ϕt on W is exactly X.

Proof. We skipped the proof since it’s similar to ODE.

We know that vector fields and one-parameter transformation group is almost the same thing,
and they’re connected by operations similar to taking derivatives or integrals. Thus sometimes we
write X = ϕ̇ to show this relation.

In the meantime we know general transformations on M are not commutative, in algebra we
introduced the commutator to study the un-commutativity, in differential manifolds, the analogy
is Lie derivatives.

Definition 2.3.4 (Lie derivatives). Let X,Y ∈ X (M), define the Lie derivative:

LX(Y )
∣∣∣
p
:= lim

t→0

(ϕ−t)∗(Y |ϕt(p))− Y |p
t

.

Where ϕ is the local transformation group induced by X, i.e. X = ϕ̇ locally at p.

This operation can be viewed as LX : X (M) → X (M). It’s called “derivative” since it has
properties similar to derivatives:

• LX(a1Y1 + a2Y2) = a1LX(Y1) + a2LX(Y2), a1, a2 ∈ R.

• LX(fY ) = X(f)Y + fLX(Y ), f ∈ C∞(M). This is called Leibniz’s law.

• (LX(Y ))(f) = X(Y (f))− Y (X(f)), f ∈ C∞(M). (∗)

The last equation reveals the similarlity between Lie derivatives and commutators (if we view
vector fields as operators on smooth functions), so we’ll often write [X,Y ] := LX(Y ). It satisfies
linearity, alternativity and Jacobi equation:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [Y,X]] = 0.

Therefore [·, ·] : X (M)×X (M) → X (M) is a Lie braket on X (M) that makes it an infinite
dimensional Lie algebra on R.

Here we’ll give a proof of (∗).

Proof. Consider F (t) = f(ϕ−t(p)) for a fixed p ∈M . By chain rule,

F (t)− F (0) =

∫ 1

0

dF (st)

ds
ds = t

∫ 1

0

F ′(u)|u=st ds.

i.e.
f ◦ ϕ−t = f + tgt,

where

gt(p) =

∫ 1

0

F ′(u)|u=st ds =

∫ 1

0

d(f(ϕ−u(p)))

du

∣∣∣
u=st

ds.

We have

g0(p) =

∫ 1

0

df(ϕ−u(p))

du

∣∣∣
u=0

ds = −X(f)|p.
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Meanwhile

((ϕ−t)∗Y )|p(f) = (Y |ϕt(p))(f ◦ ϕ−t)

= (Y |ϕt(p))(f + tgt)

= (Y (f) + tY (gt))|ϕt(p).

Hence

(LX(Y ))|pf = lim
t→0

((ϕ−t)∗Y )|p(f)− (Y |p)(f)
t

= lim
t→0

Y (f)|ϕt(p) − Y (f)|p
t

+ lim
t→0

Y (gt)

= X(Y (f))|p + Y (−X(f))|p
= (X(Y (f))− Y (X(f))) |p

Remark 2.3.5 — This proof seems like coming out of nowhere, but the main idea is to
expand f ◦ϕ−t = f + t·?+ o(t). This idea leads to constructing integrals in the first step, and
finially computed the ? is just −X(f).

Example 2.3.6 (Lie derivatives in local coordinates)

Let (U, x1, . . . , xn) be a chart on M . The partial derivatives ∂
∂xi

∣∣∣
U

∈ X (U) are a basis of

X (U). Note that [
∂

∂xi
,
∂

∂xj

]
= 0,

hence we can compute any Lie brakets [X,Y ] using Leibniz’s law.
Note that in general, n vector fields which are linear independent everywhere are not a

coordinate basis on M , since usually the Lie brakets don’t equal to 0.
This leads to a question: if we takem vector fieldsX1, . . . , Xm which are linear independent

everywhere, is there a local m dimensional submanifold at every point p ∈M tangent to these
vector fields?

We’ve checked in the homework that to define LX(Y ) at p, we need to know the value of X
and Y on a neiborhood of p instead of just at p. The reason behind it is that a single vector cannot
generate a transformation group, or a “flow”.

Back to our example, we say ( ∂
∂xi

)ni=1 is a natural frame on U when given the coordinate
x1, . . . , xn on U . When m = 1, this is just the existence of integral curves. (need some regularity)
When m > 1, a necessary condition is that

[Xi, Xj ] =
∑
k

ckijXk

for some functions ckij . This is intuitively saying that the integral curves of some Xi must either
totally lies in the submanifold or disjoint with the submanifold.

In fact, this condition is also sufficient, this result is Frobenius Theorem in literature. This
condition is like the “integrable condition” in PDE.

6
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Let’s look at the case m = 2 for an example, let X,Y ∈ X (U), assume that [X,Y ] = aX+ bY ,

LX(uX + vY ) = X(u)X +X(v)Y + v(aX + bY ).

Our goal is to find a vector field Z s.t. LX(Z) = 0, i.e. X and Z are commutative. Thus by
solving LX(uX + vY ) = 0, we’ll get the desired Z. Meanwhile this equation can be easily solved
by solving X(v) + bv = 0 for v and X(u) + av = 0 for u.

Therefore the condition can be transformed as given [X,Y ] = 0. Hence the induced transfor-
mations ϕs and ψt commute with each other, so (s, t) will give the parameter coordinates on the
submanifold.

As for general m, we can proceed by induction to build local coordinate system by requiring
[Xi, Xj ] = 0 for each pair i, j. The equations can also be solved one by one, just like the case of
m = 2.

The family of submanifolds given by Frobenius theorem gives a foliation on M . Note that
submanifolds in a foliation are pairwise disjoint.

When the equations have no solution, we say (X1, . . . , Xm) is a contact structure onM . (i.e.
a m-dimension subspace at each point) A classical example of a contact structure on R3 can be
found on the internet (by searching “contact structure”).

§2.4 Cotangent vectors and exterior forms

In calculus or physics, we often encouter symbols like dx which represents “infinitesimal increment”
of x. Probably you were never been told the strict definition of these mysterious dx.

In calculus we write
∫ b

a
f ′(x) dx = f(b)− f(a), where the dx seems to have nothing to do with

this formula. In fact, it is only useful when we’re changing the coordinates, like

df =

n∑
i=1

∂f

∂xi
dxi =

∑
i,j

∂f

∂xi

∂xi
∂yj

dyj .

Therefore we can write something like:

(
∂

∂x1
, . . . ,

∂

∂xn

)dx1
...

dxn

 =

(
∂

∂y1
, . . . ,

∂

∂yn

)dy1
...

dyn

 .

We can see that dxi are just to ensure this transform relation. Since we know ∂
∂xi

are a basis of
vector field on manifold, so we can realize dxi as the dual space of tangent space.

Definition 2.4.1 (Dual space). Recall that in algebra, the dual space of a vector space V over
R is defined as V ∗ = HomR(V,R). If we take an element in V and V ∗, we’ll get a real number
from them, this is how the word “dual” comes.

If there’s a basis e1, e2, . . . , en in V , there’s a dual basis ε1, . . . , εn ∈ V ∗ such that εi(ej) = δij ,
i.e. εi(ej) = 1 if i = j, and 0 otherwise.

Definition 2.4.2 (Cotangent vectors). Let p ∈M , define

T ∗
pM := HomR(TpM,R)

to be the cotangent space at p. Its elements are called cotangent vectors at p.

Let f : M → N be a smooth map, we know there’s a tangent map f∗ : TpM → Tf(p)N . By
algebra knowledge, there’s a dual map of f∗, namely the cotangent map f∗ : T ∗

f(p)N → T ∗
pM .

7
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In a chart (U, x1, . . . , xn), let the dual basis of ( ∂
∂xi

)|p be denoted as (dxi)|p.
Recall that we can’t define a vector field ∂

∂f for a single function f , in contrast, the notation df

does give a “cotangent vector field” on M . Since we can define df =
∑n

i=1
∂f
∂xi

dxi on each chart,
and verify it’s the same cotangent vector at a fixed point under different charts. This property is
called form invariance in calculus. In fact we can write df explicitly:

df(v) =
d(f ◦ γt)

dt

∣∣∣
t=0

= v(f)

for each tangent vector v.
On a chart (U, x1, x2, . . . , xn), we can write a cotangent field as ω = ω1 dx1 + · · · + ωn dxn,

where ωi ∈ C∞(U). Strictly we should add a pullback, say ω = φ∗
U (
∑

i ωi dxi), but since this
won’t cause any ambiguity, we usually omit the φ∗

U .
Cotangent fields are also called exterior differential forms of degree 1, or just 1-forms,

and we denote the set of 1-forms on M by A1(M). You might already guess that there are general
p-forms as well.

Indeed, in linear algebra, let V be a vector space on R, the notation ΛpV ∗ denotes the set of
alternating p-linear functions on V . Let {ei} ⊂ V be a basis, and {εi} ⊂ V ∗ the dual basis. Then
ΛpV ∗ has a basis consisting of εi1 ∧ · · · ∧ εip =: εI , I = {i1, . . . , ip} ⊂ {1, 2, . . . , n}. Using this
basis, for φ ∈ ΛpV ∗ we can write

φ =
∑
|I|=p

φIεI , φI ∈ R.

Where εI is defined as

εI(ej1 , . . . , ejp) =

 sgn

(
i1 · · · ip
j1 · · · jp

)
, I = J

0, I ̸= J

If we do the same construction at every point of M , we get the space ΛpT ∗M . Then the p-
forms are the elements of Ap(M) := Γ(M,ΛpT ∗M). Note that 0-forms are just smooth functions,
i.e. C∞(M) = A0(M).

For φ ∈ Ap(M) we can write

φ =
∑
|I|=p

φI dxI , φI ∈ C∞(M).

§2.5 Wedge product and exterior differential operator

After constructing exterior forms, let’s focus on the operations of exterior forms.
Like the wedge product in linear algebra, exterior forms can also perform wedge product:

Definition 2.5.1. Define the wedge product on exterior forms to be

∧ : Ar(M)×As(M) → Ar+s(M),

For φ ∈ Ar(M) and ψ ∈ As(M),

(φ ∧ ψ)(X1, . . . , Xr+s) =
1

r!s!

∑
σ∈Sr+s

sgn(σ)φ(Xσ(1), . . . , Xσ(r))ψ(Xσ(r+1), . . . , Xσ(r+s))

The coefficient 1
r!s! is used to eliminate repeating terms in the summation, or we can change Sr+s

to Sr+s/Sr × Ss. (Actually we can write φ and ψ using the basis and write φ ∧ ψ explicitly)

8
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There’s another operator related to calculus, the exterior differentiation d.

Definition 2.5.2. The operator d : Ap(M) → Ap+1(M) satisfies:

• R-linearity: d(aφ+ bψ) = adφ+ bdψ, a, b ∈ R, φ,ψ ∈ Ar(M).

• Leibniz’s law: d(φ ∧ ψ) = dφ ∧ ψ + (−1)rφ ∧ dψ, φ ∈ Ar(M), ψ ∈ As(M).

• d(dφ) = 0, φ ∈ Ar(M).

• For f ∈ A0(M), df is the total differentiation of f .

We claim that these 4 properties uniquely determine the operator d.

Theorem 2.5.3

Such d exists and is unique.

Proof. Since we know df =
∑

i
∂f
∂xi

dxi, it’s natural to write (in a chart)

dφ = d

(∑
I

φI dxI

)
=
∑
I

d(φI dxI) =
∑
I

(dφI ∧ dxI + φI ∧ d(dxI)) =
∑
I

dφI ∧ dxI .

Here we’ve used all the properties required. (d(dxI) = d(dxi1 ∧ · · · ∧ dxip) = 0)
This formula on local coordinates means d must be unique.
As for existence, essentially we need to check the local expression above is compatible in different

charts.
This approach is OK, but here we’ll use an intrinsic construction that is independent of coor-

dinates. For ω ∈ Ap(M),

dω(X1, . . . , Xp+1) =

p+1∑
j=1

(−1)j−1Xj(ω(X1, . . . , X̂j , . . . , Xp+1))

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xn)

To check this is right, the easiest way is to write it in coordinates, i.e. take Xs =
∂

∂xis
.

Remark 2.5.4 — Again, this construction seems jumps out of nowhere. If we look at 1-forms,
ω ∈ A1(M),

(dω)(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ])

Now let ω = g df , dω = dg ∧ df , and note that

X(g df(Y )) = X(gY (f)) = X(g)Y (f) + g ·XY (f)

Y (g df(X)) = Y (gX(f)) = Y (g)X(f) + g · Y X(f)

We see that (dg ∧ df)(X,Y ) = X(g)Y (f)− Y (g)X(f) and the remaining term is exactly the
Lie bracket. From this we can guess the general expression of dω.

9
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We can generalize the tangent and cotangent fields to tensors: T r,s(M) = Γ(M,T r,s(M)) the
(r, s)-tensor. Here T r,sM := TM ⊗ · · · ⊗ TM︸ ︷︷ ︸

r

⊗T ∗M ⊗ · · · ⊗ T ∗M︸ ︷︷ ︸
s

.

Let V be a finite dimensional vector space on R, the elements in V ⊗ · · · ⊗ V︸ ︷︷ ︸
r

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
s

are multi-linear maps
V ∗ × · · · × V ∗︸ ︷︷ ︸

r

×V × · · · × V︸ ︷︷ ︸
s

→ R

Thus in a chart (U, x1, . . . , xn), let φ ∈ Γ(U, T r,sM), we can write φ as

φ =
∑

φI
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs ,

where the summation is taken over i1, . . . , ir, j1, . . . , js ∈ {1, . . . , n}. Note that a⊗ b and b⊗ a are
independent elements.

Remark 2.5.5 — For general definition of tensor product, let R be a commutative ring, 1
the identity of R. Let M,N be R-modules, we can define the tensor product M ⊗R N . The
elements are of the form

∑
mi ⊗ ni, where we require the linearity of each components, and

λm⊗ n = (λm)⊗ n = m⊗ (λn). The vector spaces are just modules over a field.

Remark 2.5.6 (On general vector bundles) — A “bundle” means that we attach a fibre (usually
a vector space) on each point, and the fibres varies in a way that we think as “continuously”.

An R-vector bundle E of rank n is defined as (p : E → X, {(Uα,Φα)}), such that Uα ⊂ X
is open, with Φα : p−1(Uα) → Uα × Rn satisfying

• Φα(q) = (p(q), φα(q)),

• On Uα ∩ Uβ , Φβ ◦ Φα = idUα∩Uβ
×φαβ , where φαβ ∈ GL(n,R).

Under this definition, φαβφβγφγα = id. This is called the cocycle condition.

Like we do with groups, vector bundles also have homomorphisms, subbundles and quotient
bundles.

Example 2.5.7

A Riemann metric on M is a (0, 2) symmetric tensor, and positive definite everywhere, i.e.
can be locally written as

g =
∑
i,j

gij dxi ⊗ dyj

with gij = gji and (gij)n×n are positive everywhere. When n = 2 we sometimes write
g = E dx2 + F dxdy +Gdy2, where dxi dxj :=

1
2 (dxi ⊗ dxj + dxj ⊗ dxi).

To construct a Riemann metric, we need the unit decomposition theorem.

Theorem 2.5.8 (Unit decomposition)

Let M be a smooth quasicompact manifold, then for all open covering {(Uα, φα)}α∈A there
exists a locally finite open refinement with a unit decomposition.

10
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Proof. For a compact set K and an open set U ⊇ K, we can construct a function f ∈ C∞(M),
s.t. supp f ⊂ U , and f |K ≡ 1, 0 ≤ f ≤ 1.

By quasicompactness, take a locally finite precompact open covering of M which refines the
one we already have (precompact means the closure is compact), and still denote it as {(Uα, φα)},
then we can take Wα ⊂ Uα s.t. Wα precompact, and construct fα w.r.t. Wα as stated. Hence
λα = fα∑

β fβ
satisfies the condition.

§3 Integrals on manifolds

In this section we generalize integrals and Stokes formula to the smooth manifolds.

§3.1 Integrals of exterior forms

Let M be an oriented smooth manifold with dimension n, and ω ∈ An(M). We want to define∫
M
ω.
First we take a unit decomposition λα on the atlas {(Uα, φα)}. Here we require the atlas

compatible with the orientation of M . Define∫
M

ω :=
∑
α

∫
Rn

(φ−1
α )∗(λαω)

The integral of n-forms on Rn is defined as usual way.
Since the value stays invariant under the refinement of unit decomposition, for two different

decomposition, we can consider their common refinement to show they give the same value. Thus
the integral is well-defined.

For manifolds with boundary, we use the “outer normal vector fisrt”(ONF) rule to determine
the orientation on the boundary.

Specifically, if (e1, e2, . . . , en−1) is a frame of ∂M , then (ν, e1, . . . , en−1) is a frame compatible
with the orientation of M .

Theorem 3.1.1 (Stokes formula)

Let M be an n-dimensional orientable smooth manifold with boundary, and ω ∈ An−1
cpt (M).

Determine the orientation on ∂M by ONF, then∫
M

dω =

∫
∂M

ω.

Proof. The idea is using unit decomposition and hence assume M ⊂ Rn. We only need to check it
on local charts.

When the manifold is not orientable, we have other forms of integrals, such as integrals with
respect to a measure. However, unlike the exterior forms, there aren’t close connections between
measures of different dimensions, we can’t generalize Stokes’ formula in this way.

Back to the Stokes formula, there’s one thing we need to know about: when the boundary ∂M
is piecewise smooth, does this formula still holds?

Intuitively this should be right, since we can use a series of smooth boundaries to approximate
the singular point, and this difference is small under integration. This technique will be formalized
in differential topology part, so here we just take it as granted.

11
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§3.2 Closed and exact forms

After we have Stokes formula, we would like to consider some special forms.

Definition 3.2.1. Let ω be a differential form, if dω = 0, we say it’s a closed form, if ω = dφ
for some differential form φ, we say ω is an exact form.

Clearly exact forms are always closed, while closed forms may not be exact.

Example 3.2.2

Let M = R2 \ {O}, and ω = x dy−y dx
x2+y2 , then ω is closed but not exact. (Homework problem)

Let’s dig deeper into the connections between closed and exact forms. Naturally we’ll ask:
when does a closed 1-form on M is exact?

Now if we want to construct φ s.t. dφ = ω, we would naturally want to do this by integration
on paths (since ω is 1-form).

Therefore we fix a basepoint x0 ∈ M , and for each x ∈ M , we choose a path α : [0, 1] → M

connecting x0 and x, and define φ(x) =
∫
α
ω =

∫ 1

0
α∗ω. Obviously there are many different paths,

but if two paths forms a boundary of some regions in M , by Stokes formula on this region we get
the integral is invariant of paths. (i.e. 0 =

∫
D
dω =

∫
α
ω −

∫
α′ ω)

Proposition 3.2.3

If M is simply connected, then any closed 1-forms on M are exact.

However, if two paths are not homotopic (i.e. there’s a “hole” between the paths), things may
go wrong, the integrals may change, like the above example.

When M = R2 \ {P1, . . . , Pm}, indeed there exists ηi ∈ A1(M) s.t. dηi = 0 and∫
∂B(ϵ,Pj)

ηi =

{
1, i = j

0, i ̸= j
.

The construction is just applying a translation and scaling of the above example. Therefore we
can decompose any form ω ∈ A1(M) as

ω = dφ+ a1η1 + · · ·+ amηm.

This is actually a simple example of de Rham cohomology.

§3.3 de Rham cohomology

Let M be a smooth manifold,

Zp(M) := {ω ∈ Ap(M) : dω = 0}, Bp(M) := {ω ∈ Ap(M) : ∃φ, ω = dφ}.

We can define the de Rham cohomology group

Hp
dR(M) :=

Zp(M)

Bp(M)
=

ker(d : Ap → Ap+1)

im(d : Ap−1 → Ap)
.

It’s also a vector space over R. In general it might be of infinte dimension. But in the future we
can prove when M is compact, dimHp

dR(M) < ∞; When M is quasi-compact, the dimension is
countable.

12
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Example 3.3.1

When p ≥ n+ 1, Hp
dR(M) = 0.

Another example is

Hp
dR(R

2 \ {P1, . . . , Pm}) ∼=


R, p = 0

Rm, p = 1

0, p ≥ 2.

.

We can think of de Rham cohomology class as the “topological obstacles” that keep closed
forms from being exact forms, while homology class counts the holes in the space linearly.

Remark 3.3.2 — Simplicial homopogy groups Hn: description and facts. See textbooks for
details.

Let X be a topology space fused together by finitely many simplicial complexes (general-
ization of triangles in higher dims). We can define the boundary operator ∂ on each complex,
also we define the group of p-chains Cp(X) to be the abelian group freely generated by p-dim
complexes.

Hence ∂ : Cp(X) → Cp−1(X) is a homomorphism and ∂2 = 0. Therefore

Hp(X) :=
Zp(X)

Bp(X)
=

ker ∂p
im ∂p+1

is called the simplicial homology group of X.

We have the following fact:

Theorem 3.3.3 (de Rham isomorphism)

Let M be a smooth manifold, we have the canonical isomorphism

Hp
dR(M) ∼= Hom(Hp(M),R).

Some related facts:

• The homology group Hp(X) is a homotopic invariance.

It can be dirived from the following:

– Hp(X) is invariant under subdivision of simplicial complexes.

– For different partitions, we can take their common subdivision to induce the isomor-
phism. This is enough to deduce homeomorphic invariance.

– For general homotopy, we can use “combinatorical” maps to approxiamte them.

• For smooth manifold M , we can always find a smooth triangularization.

E.g. whenM is compact, let g be a Riemann metric, we can coverM using finitely many small
convex balls, and construct the triangularization by the intersections of balls, i.e. centers as
0-complex, intersection of n balls corresponds to a n− 1-complex formed by these n vertices.

Now we can find Ap(M) → Hom(Cp(M),R) as

ω 7→
(
c =

∑
ciσi 7→

∫
c

ω =
∑

ci

∫
σi

ω

)
,

13
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where Cp(M) is taken from the smooth triangularization of M . Therefore the integral gives a
homomorphism ∫

: Hp
dR → Hom(Hp(M),R),

and the theorem states that this is in fact an isomorphism.

Remark 3.3.4 — The homology theory nowadays often talks about “singular homology”,
which use a simplified language (hence more abstract) that can be easily connected with
cohomology and algebra.

The homology group also has something to do with Euler characteristic:

χ(M) =
∑
p

(−1)p rank(Hp(M))

(recall that rankG = r means G = Zr × T for an abelian group)
This is an example of transfering numerical invarance to algebraic invariance, which is called

“categorification” in differential topology.

§4 Differential topology

§4.1 Whitney theorems

The basic question for this section: given a smooth manifold M , can we place M into Rn?

Example 4.1.1

If M is compact, we can take unit decomposition (Uα, φα), α = 1, . . . , k with
∑

α λα = 1.
Consider a map

f :M → Rn+1 × · · · × Rn+1︸ ︷︷ ︸
k

p 7→ ((λi(p)φi(p), λi(p)))
k
i=1

We can check that f(x) = f(y) =⇒ φβ(x) = φβ(y) if x ∈ Uβ , thus x = y. In fact f is also

an immersion, i.e. TpM
f∗−→ Tf(p)RN is an injective homomorphism.

By the fact that an injective immersion of a compact space is an embedding, we know f
is an embedding from M into RN .

This means we always can embed a compact manifold into an Euclid space with sufficiently
high dimensions. In fact, we can do it with less dimensions.

Definition 4.1.2. Let M be a smooth manifold, we say f : M → N is an immersion if f∗ :
TpM → Tf(p)N is injective for all p ∈M . Sometimes we write f :M ↬ N for immersions.

We say f is an embedding if it’s also a homeomorphism between M and f(M).

14
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Example 4.1.3

Let f : R → R2, then the image of f is a smooth curve. If the curve has self-intersection, then
it’s not an embedding.

The case for immersions are more interesting. The map f(x) = eix and the topologist’s
sine curve are both immersions but not embeddings. (Since the topologist’s sine curve is not
locally path connected, it’s not homeomorphic to R.)

If the image of f has a singular point (i.e. the tangent line doesn’t exist), then f is not
an immersion.

We say a map f is proper if the pre-image of compact sets are also compact. Note that if
f maps R to an open segment in the above example, then it’s not proper. So we can think of a
proper map maps ends to ends.

Proposition 4.1.4

An injective proper map into a locally compact Hausdorff space is a homeomorphism to its
image.

Proof. Left as exercise. This proposition is a key property of proper maps.

Proposition 4.1.5

Let M be a C2 smooth manifold (second countable), there exists a proper smooth map
f :M → Rn, ∀n ∈ N∗.

Proof. It’s sufficient to construct f :M → R proper and smooth, then compose it with linear maps
R → Rn.

Take a unit decomposition {(Uα, φα)}α∈A, with
∑
λα = 1. Recall that we require the covering

is locally finite, and supp(λα) is a compact set in Uα. Also Wα = λ−1
α (1) forms a covering.

Moreover, we can take a countable unit decomposition, let f(p) :=
∑

j jλj(p) for j ∈ N. We
can check this map is indeed proper.

Remark 4.1.6 — The key trick is to take a countable unit decompostion, and this requires the
C2 condition onM , which is stronger than the quasi-compact condition of unit decomposition.
This difference comes from the fact that we want to do something to the charts one by one,
in this case it’s taking the sum

∑
j λj .

Theorem 4.1.7 (Whitney immersion)

Let M be a C2 smooth manifold with dimM = m. Let f : M → Rn be a smooth map with
n ≥ 2m. Then for all ε > 0, there exists an immersion g :M → Rn satisfies:

∥g(p)− f(p)∥ < ε, ∀p ∈M.

15
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Theorem 4.1.8 (Whitney embedding)

In the above theorem, if n ≥ 2m+ 1, we can also require g is injective. In particular, if f is
proper, we can make g proper, hence an embedding.

Note that C2 is a necessary condition of embedding into Rn.

Proof outline of Whitney immersion. For the sake of convenience, we assume M is compact here.
(For the general case, the proof is the same with a minor adjust of induction)

We take the unit decomposition {Wi} ≺ {Ui} as usual.
Observe that if the condition is satisfied on some open set, we can modify f outside a neigh-

borhood of a compact set in it, and still keep the conditions satisfied in this compact set.
Therefore our plan is to do this on each Ui, s.t. the difference we made is no more than ε

2i ,
and do not affect the immersion property already attained in W1 ∪ · · · ∪Wi−1.

On each Ui, we can think of U = B(0, 2), W = B(0, 1) ⊂ Rm. The function λ : Rm → R
satisfies supp(λ) ⊂ U , λ|W = 1. For f : U → Rn, we want to modify f inside a range of ε s.t. the
modification supports on a compact set in U .

To do so, consider g(x) = f(x) + λ(x)Ax, where A ∈ Matn×m(R) has sufficiently small coef-
ficients, say

∑
|aij |2 < ε

100 . We hope Dg = Df + A has rank m everywhere in W (hence it’s an
immersion). (Remember that λ is 1 on W )

Consider

U ×Matn×m(R) →Matn×m(R)
(x,A) 7→ −Df |x +A

We hope that for some A, Dg :W →Matn×m avoids all the matrices with rank less than m.

Lemma 4.1.9

For k ≤ m, the matrices with rank lower than m forms a submanifold Mk with dimension
nk + (m− k)k.

Proof. WLOG the columns v1, . . . , vk are linearly independent. If B + δX also has rank k, then
v1, . . . , vk can be arbitarily changed, thus has n degree of freedom; while the rest must lie in the
space spanned by v1, . . . , vk, hence has degree of freedom k.

Thus dimU + dimMk = m+ nk +mk − k2 < nm for k ≤ m− 1 when n ≥ 2m.
So all matrices A s.t. Dg(W ) intersects with Mk forms a null set (the dimension is less than

nm, and it’s a smooth manifold), hence we can always take A s.t. Dg has rank m everywhere.

Remark 4.1.10 — In fact we only need f to be C2 to apply this proof.
The statement “f :M → N is C1 and dimM < dimN , then the image is a null set in N”

cannot be reduced to C0, Peano curve is a counterexample for this.

Next we’ll prove the Whitney theorem for injective immersion.

Proof of Theorem 4.1.8. Suppose n ≥ 2m+ 1.
Similarly, if f :M → Rn is already an embedding on U , then we’ll show the small modification

will not affect the compact set W ⊂ U .
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Note that by Whitney immersion theorem, we may assume f is an immersion, and immersions
are local embeddings, so we can always start from a small open set U .

Therefore we need to show that for disjoint open sets U, V ⊂ Rm, if we have

f : U ∪ V → Rn

s.t. f |U is an embedding, we want to modify it to g s.t. g|U = f |U , and g(V ) ∩ f(U) = ∅.
Now since we have an extra dimension, it’s natural to translate the image f(V ) by a fixed

length in that dimension.
Let g(x) = f(x) + λ(x) · β⃗, where λ is the unit decomposition on V . Consider

U × V → Rn, (x, y) 7→ −f(x) + g(y).

By dimensional reasons, the image has measure zero in Rn. Thus we can take β⃗ s.t. it’s not in the
image. (Moreover we can take ∥β⃗∥ < ε.)

The rest can be implemented by induction, see for details on the textbook.

Remark 4.1.11 (Locally canonical representation of immersions) — Let f : M → N be an
immersion. Then for any p ∈ M , there exists a local coordinate U = U(p) ⊂ M and
W =W (f(p)) ⊂ N , s.t. f is of the form

f(x1, . . . , xm) = (y1, . . . , yn)

with yi = xi when i ≤ m and 0 otherwise.
This is essentially the implicit function theorem.

In history, what we stated above is called the “easy” Whitney immersion / embedding. The
“hard” version can reduce the dimension to 2m − 1 and 2m, respectively. However in this case
we cannot ensure the resulting map is close enough to original map. Therefore the range of easy
version are also called “stable range”.

For some specific manifold M , it might can be immersed / embedded into lower dimensional
space than the given bound. But the bound in hard Whitney theorems is indeed the best bound.
(e.g. RPm when m = 2k cannot be smoothly immersed into Rn for n = 2m − 2. This need the
knowledge of characteristic classes)

§4.2 Diffeotopy

Intuitively, there are many different ways to embed a manifold to a given space, so we need a way
to say which ones are the same.

Definition 4.2.1 (Diffeotopy). Let f0, f1 :M → N be two smooth embeddings. We say they are
diffeotopic if there exists a smooth map

F :M × [0, 1] → N

such that ft(x) := F (x, t) are smooth embeddings for all t, and f0(x) = F (x, 0), f1(x) = F (x, 1).

The embeddings which are not diffeotopic represents the different knotting ways of M in N .
Naturally we would ask: when are the embeddings plain, i.e. there is only one diffeotopic class?

If we apply Whitney embeddings to M × [0, 1], we know that f0, f1 : M ↪→ R2m+3 are always
diffeotopic, meaning that M will not “knot” in Eucild space of (2m+ 3) or higher space.
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Remark 4.2.2 — Warning: M × [0, 1] is in fact a manifold with boundary, and we are
requiring the boundary maps to f0 and f1. We will discuss this issue later in this course.

§4.3 Tubular neighborhood thoerem

Now we have Whitney embeddings, we can think every manifold as a submanifold in Rn, which
greatly simplifies our proofs and discussions. (As Rn has many canonical structures like orthogo-
nality and coordinates)

The idea of tubular neighborhood can be expressed by an simple example. Think of an embed-
ding S1 ↪→ R3 whose image is a circle or knot, then we can find a neighborhood of S1 which looks
like a “tube”.

This “tube” can be constructed as a union of a portion of normal plane at every point of S1, so
the tube is a “product” of S1 and a disk. In the sense of “products”, the canonical representation
of immersions can be regarded as locally tubular neighborhood, since it’s a product of M and the
latter n−m coordinates.

Another example is S1 ↪→ M , where M is a Mobius band, note that the neighborhood is
different from the case when it’s embedded into an Eucild plane. So our description of tubular
neighborhood must take this difference into consideration, thus we will use normal bundle instead
of product spaces.

The smooth property of the manifold is to prevent something called wild knots, that is, a series
of knots converging to a point and come back to the starting point.

Definition 4.3.1 (Normal bundles). Let TM be the tangent bundle of M , if we embedded M
into Rn,

(TM)⊥ := {(x, v) ∈M × Rn : v ∈ (TxM)⊥}
is called the concrete normal bundle. The projection map π : (TM)⊥ →M is just (x, v) 7→ x.

Note that each fibre is a vector space, and it can be locally trivialized (locally written as a
product space, equivalent to giving an atlas). So it’s indeed a vector bundle.

Theorem 4.3.2 (Tubular neighborhood theorem, alpha version)

Let M be a smooth manifold embedded into Rn, (denote the embedding by ι) there exists a
smooth function ε : M → (0,+∞) such that the map ψ : (TM)⊥ → Rn by (x, v) 7→ x+ v is
a homoemorphism onto its image, restricted on the neighborhood of zero section Z:

∆ε := {(x, v) ∈ (TM)⊥ : ∥v∥ < ε(x)}.

Proof. Consider the tangent map ψ∗ : T(x,v)(TM)⊥ → Tx+vRn, note that T(x,v)(TM)⊥ ∼= TxM ⊕
(TxM)⊥ ∼= Rn. By definition ψ∗ is the identity map on zero section Z.

This induces that ψ is an immersion in a neighborhood of Z. We only need to show it’s also
an injection in some neighborhood.

For any p ∈ M , we can take compact sets p ∈ W ⊂ W ′ and open set W ′ ⊂ U s.t. ι is an
embedding on W ′, and ι(M \ W̊ ′) is disjoint with ι(W ). (Hence the distance has a lower bound δ)

Again we first consider the case when M is compact, we can take the finite covering Wα ⊂
W ′

α ⊂ Uα as stated, we can take δ := minα δα, so ε = δ the constant map satisfies the condition.
For the case when M is C2, we proceed by induction. Suppose we already constructed ϵn on

U1 ∪ · · · ∪ Un, such that ψ is injective on ∆ϵn(W1 ∪ · · · ∪Wn).
In the (n+ 1)-th step, take δn+1 < min{ ϵn

3 (x)}, and

ϵn+1(x) = ϵn(x) + λn+1δn+1.
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Therefore taking n to infinity we’ll get ε :M → [0,+∞) which satisfies the condition.

We have other “polished” versions of tubular neighborhood theorem which comes in handy.

Theorem 4.3.3

Let M be a C2 smooth manifold, ι :M ↪→ Rn is a smooth embedding. There exists a smooth
retraction of neighborhood Ω → ι(M) and a smooth homeomorphism (TM)⊥ → Ω s.t. the
following diagram commutes.

(TM)⊥ Ω

M ι(M)

diffeo.

π retraction

ι

(1)

Here π is the bundle projection.

Proof. Let η : ∆ϵ(M) → (TM)⊥ by

(x, v) 7→

(
x,

v√
ϵ(x)2 − ∥v∥2

)

Then ψ ◦ η−1 gives the map (TM)⊥ → Ω.

Theorem 4.3.4

Let M be a C2 smooth manifold with embedding ι : M ↪→ N . Here we require N to be a
Riemanian manifold. Then the statement of above theorem also holds.

Sketch of proof. Embed N into Rp smoothly, we need to show a “double layer” tubular neighbor-
hood theorem, with respect to

TM ⊕ (TM)⊥TN ⊕ (TN)⊥ ∼= TRp.

Using the same technique we can prove this result.

An application of this tubular neighborhood theorem is the smoothing of maps and homo-
topies.

Theorem 4.3.5

If f :M → N is a continuous map, then there exists a smooth map f̃ :M → N s.t.

f̃(M) ⊂ U, ∀U ⊇ f(M).

Proof. Let N ↪→ Rp, we can find a smooth map g :M → Rp s.t. g(M) lies in a tubular neighorhood

Ω of N . Let f̃ :M → N be the composition of g and the retraction Ω → N .
The second condition automatically satisfies when we replace N with U .
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Definition 4.3.6 (Smooth homotopy). Let H : M × [0, 1] → N be a C∞ map and a homotopy.
If there exists ε > 0, such that Ht = H0 and H1−t = H1 for t ∈ (0, ε), we say H is a smooth
homotopy.

The reason we’re requiring more is that we hope the concatenation of smooth homotopies is
still smooth.

Theorem 4.3.7

Let f : M × [0, 1] → N be a continuous homotopy. If f0, f1 are smooth, Then there exists a

smooth homotopy f̃ :M × [0, 1] → N sufficiently close to f .

Remark 4.3.8 — Smooth homotopies do not require all the ft’s are immersions, e.g. S1 → R2

by common way and a twisted way. We use the term “regular homotopy” for homotopies
that are immersions everywhere.

§4.4 Transversality

Well, transversality mainly talks about how two manifolds are intersected. Taking 1-dim manifold
(i.e. curves) for an example, if the intersection point has “multiplicity” greater than 1, then the
curves are not transversal.

Another example of non-transversal is the saddle surface intersecting a plane at the saddle
point, where the intersection are two lines.

Definition 4.4.1. Let f : M → N be a C∞ map between manifolds. Let A ⊂ M , S ⊂ N be
regular C∞ submanifolds. We say f and S transverse on A if for all p ∈ A ∩ f−1(S),

f∗TpM + Tf(p)S = Tf(p)N.

We write this as f ⋔A S.

Example 4.4.2

When A ∩ f−1(S) = ∅, automatically f ⋔A S. When S = N , it’s trivial that f ⋔A S. When
A =M , we denote the transversality as f ⋔ S.

A real basic example is when S = {q}, then f ⋔ q means “f submerges q ”, or q is a
regular value of f .

Theorem 4.4.3 (Regular value theorem)

Let f : M → N be a smooth map, q ∈ N . If f ⋔ q, we have f−1(q) is a regular smooth
submanifold of M .

Moreover dim f−1(q) = dimM − dimN when f−1(q) ̸= ∅.

The proof is essentially the implicit function theorem, and it’s much like the proof when M = Rn,
N = R.

Definition 4.4.4. We say f :M → N is a submersion at p ∈M if the tangent map f∗ : TpM →
Tf(p)N is surjective.
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We also call p a regular point of f . If q ∈ N satisfies the points in f−1(q) are all regular, we
say q is a regular value.

The opposite of regular points/values are named as critical points/values. Denote all the
critical points of f by Crit(f).

Theorem 4.4.5 (Disk lemma)

Let M be a compact manifold, dimM = dimN , f : M → N , and q is a regular value of f .
There exists an open neighborhood V = V (q) ⊂ N and an open sets f−1(V ) = U1 ∪ · · · ∪Uk,
where Ui’s are pairwise disjoint, such that

f |Ui
: Ui

∼−→ V

are smooth homeomorphisms.

Proof. Since f−1(q) is a 0-dim regular submanifold, it is an isolated set inM . By the compactness
of M , it must be finite, say f−1(q) = {p1, . . . , pk}.

By the canonical form of submersions, we can take Wi = Wi(pi) s.t. f |Wi is a smooth homeo-
morphism onto f(Wi) =: Vi.

Let

V =

(
k⋂

i=1

Vi

)
\ f

(
M \

k⋃
i=1

Wi

)
.

We can directly check that it satisfies the conditions.

You might notice that the statement is very similar to the covering space. However f need not
be a covering map since there’s an issue of connected components.

Let’s look at some examples which provide more insight of critical points.

Example 4.4.6

Consider a map f : 2T 2 → T 2 by “pinching” a part of the surface which contains a hole to a
single point, then Crit(f) is not contractible, hence we’ll lose some information when we look
at the image of f .

Because of this kind of wiredness, we can’t determine the preimage of critical values like
we do in regular value theorem.

However, there are still something we can do with these points.

Definition 4.4.7 (Non-degenerate isolated critical points). Let f : M → R be a smooth map,
dimM = m. We say p ∈ Crit(f) is non-degenerate, if there’s a local chart U ∋ p s.t. f is of the
form

−(x21 + · · ·+ x2i ) + (x2i+1 + · · ·+ x2m)

where the coordinate of p is (0, 0, . . . , 0).
Here the number i is independent of the choice of charts, called the index of p. E.g. m = 2, the

parabolic surface opens upward has a non-degenerate critical point of index 0, the saddle surface
has a point of index 1.

Obviously p is isolated critical point, as there’s no other critical points in U .
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If all the critical points of f are non-degenerate, we call f a Morse function. For example,
the projection map from T 2 to the x-axis.

In fact this is connected to topological properties of compact manifolds. If M is compact, then

χ(M) =

m∑
i=1

(−1)i#Criti(f) =⇒ χ(M) ≤ #Crit(f).

Moreover Morse function can give a cell decomposition of M , hence will induce the so-called
Morse homology.

Remark 4.4.8 — Morse functions and non-degenerate critical points are not required in this
course.

Example 4.4.9

Consider f : C2 → C by (z, w) 7→ zw. The regular values of f are c ∈ C, c ̸= 0.
The crtical value is c = 0,

f−1(0) = (C× {0}) ∪ ({0} × C)

Because of the existence of the critical point, there are nontrivial automorphisms of f−1(c)
by rotate c around the origin several loops.

This is known as Lefschetz fibration in literature.

Theorem 4.4.10 (Sard)

Let f : M → N be a C∞ map, then the critical values of f form a null set in N , hence the
regular values are dense in N . (Manifolds are C2.)

We will skip the proof now for some reasons. The proof will essentially use the condition C∞

instead of Cr.
There is a more general theorem:

Theorem 4.4.11 (Transversal preimage theorem)

Let f : M → N be a C∞ map, S ⊂ N is a regular closed submanifold. If f ⋔ S, then
f−1(S) ⊂M is a regular C∞ manifold, and codim f−1(S) = codimS.

The key step of the proof is the “local canonical representation” of transverse, i.e. there exists
U = U(p) and V ⊇ f(U) s.t. f is of the form (u, v) 7→ (η(u, v), v) ∈ Rs × Rn−s, which is an
application of implicit function theorem.

Theorem 4.4.12 (Transverse approximation theorem)

Let f :M → N be a C∞ map, S ⊂ N is a closed regular smooth manifold. Then there exists
a smooth map g : M → N approaches f within arbitarily small difference such that g ⋔ S
and f ≃ g. (Homotopy equivalent)

Moreover if f ⋔K S, where K ⊂M compact, we have f |K ≡ g|K .
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The key point is that when K ⊂ M is compact and f ⋔K S, we have f ⋔U S for some U ⊃ K
open.

Comparing to Sard’s theorem, we can make small modifications to make f into g in this theorem.
Next we’ll go through the “boundary” versions of above thoerems.

Theorem 4.4.13 (Collar neighborhood theorem)

Let M be a smooth compact manifold with boundary, then ∂M has an open neighborhood
homeomorphic to ∂M × [0, 1).

Theorem 4.4.14

Let f :M → N , C∞. IfM is a manifold with boundary, N without boundary, S ⊂ N regular.
If f ⋔ S, and ∂f := f |∂M ⋔ S, then f−1(S) ⊂ M regular and ∂f−1(S) = f−1(S) ∩ ∂M .
When it is nonempty, codimM f−1(S) = codimS.

Theorem 4.4.15

Let f :M → N , C∞. IfM is a manifold with boundary, N without boundary, S ⊂ N regular
and closed. Then there exists g arbitarily close to f , such that g ⋔ S and ∂g ⋔ S.

Moreover if f ⋔K S holds for a compact set K, we can require g|K = f |K .

These theorems have other versions in fibre bundle sections and other cases, but they can’t
be implied by each other, so we have to repeat this annoying proof again. That’s why the books
about differential topology are always longer.

§4.5 Connected sums

Recall that last semester we talked about connected sums in classifications of closed surfaces. In
differential topology, we need to clarify the differential structures, so the question arise: under
what conditions are the connected sum M#N well-defined?

First let’s look at some examples.

Example 4.5.1

If M has two connected components, then M#N is not well-defined, since N can connected
to either component of M .

If M,N ∼= CP 2, then there’s an orientation issue of M#N , it can be CP 2#CP 2 or
CP 2#(−CP 2), which aren’t smoothly homeomorphic. This can be proved by the “intersection
form”.

From these examples we see that the connectedness and orientations matters the connected
sum. Another issue comes from the differential structure at the place where the tube connects the
original manifolds. Also we need to check whether the connected sums are homeomorphic when
we choose different disks to cut out.

When M,N are connected and oriented, by collar neighborhood theorem, we can cut out a
smooth small disk and connects the collar neighborhood together to get the charts around the
cut.
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To be exact, let B ⊂M,B′ ⊂ N be n-dimensional balls, and the boundary of M \B, N \B′ is
homeomorphic to Sn−1. Take the collar neighborhood of them and fuse them together (compatible
with orientations) to form the tubular neighborhood of Sn−1, then (M \ B) ∪Sn−1 (N \ B′) is a
smooth manifold.

To prove the manifold does not depend on the choice of balls,

Theorem 4.5.2 (Homogeneity)

Let M be a smooth manifold, U ⊂M is a connected open set. For any p, q ∈ U , there exists
smooth homeomorphisms ht : M → M , t ∈ [0, 1], such that h0 = idM , h1(p) = q, and ht is
identity map outside some compact subset of U .

Proof. When U is an open ball in a chart, we can explicitly construct the ht’s.(Omitted here)
The conclusion in the theorem forms an equivalence relation on U , and we can prove the

equivalence class is both open and closed, thus by connectedness we’re done.

Remark 4.5.3 — In fact the topological connected sum are harder to define.
The set of smooth manifolds up to smooth homeomorphisms is a half group under the

connected sum. It becomes a group after quotient out the cobordism relation.

§4.6 Intersection numbers

Some motivations:

• Whether f0, f1 :M → N is homotopic?

• Is f :M → N contractible?

• Does f :M →M has a fixed point?

• How many fixed points are there?

• Is there a singular point in a smooth vector field?

• Does a smooth function has critical points?

• Whether M and N are smoothly homeomorphic?

To answer these questions, people want to find some invariants to give a sufficient condition of
these statements. Typical ones are Euler characteristcs, fundamental groups and homology groups.
Here we introduce another one: intersection numbers.

Example 4.6.1 (Fundamental theorem of algebra)

Let f ∈ C[x], then f has a zero in C.
We can smoothly extend f to Ĉ → Ĉ, then deg f is precisely the degree of f as a smooth

map. Later we’ll see that deg f ̸= 0 =⇒ f is surjective.
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Example 4.6.2 (Lefschetz number)

Let f : M → M , M is a compact smooth manifold. Let ∆M = {(x, x) ∈ M ×M}, then the
fixed points are just Γ(f) ∩∆M .

The Lefschetz number L(f) is defined as the “signed sum” of transverse intersection points
of Γ(f) and ∆M . (e.g. when M = R, the points f(x) = x with f ′(x) > 1 or f ′(x) < 1 are
treated as negative or positive)

In fact L(idM ) = χ(M), and L(f) ̸= 0 =⇒ f has fixed points.

There are two types of intersection numbers, we’ll discuss them one by one.

§4.6.1 Modulo 2 intersection number

Our goal is: for smooth manifold M,N , M compact, S ⊂ N a regular closed submanifold, and a
continuous map f :M → N , if dimS + dimM = dimN , we will find a number

I2(f, S) ∈ Z/2Z

which only depends onM,N,S and the homotopy class of f . Here we do not require the manifolds
to be orientable.

The way to construct it is as follows:

• First we do this for f ∈ C∞ and f ⋔ S.

• Use the transversal approximation to generalize it to C0.

Intuitively, when f ∈ C∞ and f ⋔ S, if f−1(S) is a finite set, we simply let

I2(f, S) := #f−1(S) mod 2.

The reason we’re taking modulo 2 is to ensure invariance under homotopic equivalences of f .

Proposition 4.6.3

If f0, f1 ∈ C∞, f0, f1 ⋔ S, f0 ≃ f1. then I2(f0, S) = I2(f1, S).

Proof. Let F :M × [0, 1] → N be a homotopy from f0 to f1.
By transversal approxiamtion, we can assume F ⋔ S.
Now by transversality, F−1(S) is a union of finitely many loops and segments (compact 1d

regular submanifold), thus ∂F−1(S) consists of finite points, and #∂F−1(S) is even. Therefore
I2(f0, S) = I2(f1, S).

Note that here we used the classification of compact 1-dimensional smooth manifolds.
In fact, take the universal convering space X̃/X, we can prove that X̃ ≈ R. Then Gal(X̃/X)

is an infinite cyclic group (or trivial group), taking a smooth Riemann metric on X̃, the rest is the
same with topological case (i.e. C0 case).

Next for f :M → N ∈ C0, take a transversal approxiamtion g ≃ f , g is C∞ and g ⋔ S. Define
I2(f, S) := I2(g, S). This is well-defined by above proposition.
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§4.6.2 Oriented intersection number

Sometimes we will find that, if we can assign a “direction” for curves, we can say the intersection is
“positive” or “negative”, which provides a more efficient way to count the number of intersections.

This can be generalized to any orientable manifolds. Let M,N be smooth oriented manifolds,
M is compact. Let f :M → N be a continuous map, S ⊂ N is regular closed oriented submanifold
with dimM + dimS = dimN , then we want to define I(f, S) ∈ Z.

Still we’ll do this in two steps. When f ∈ C∞ and f ⋔ S, for any p ∈ f−1(S), by transversality

f∗TpM ⊕ Tf(p)S = Tf(p)N.

Using the orientation of M,S,N , the orientation on two sides may be the same or the opposite,
which corresponds to I(f, S; p) = ±1. Hence

I(f, S) =
∑

p∈f−1(S)

I(f, S; p)

Proposition 4.6.4

If f0, f1 ∈ C∞, f0, f1 ⋔ S, f0 ≃ f1. then I(f0, S) = I(f1, S).

Proof. Using the notation of the previous proof, F−1(S) is an oriented submanifold now.
For each segment or loop in F−1(S), consider their boundary (which lies in ∂F−1(S) ⊂ M ×

{0, 1}).
Observe that the orientation of ∂(M × [0, 1]) derived from F and the orientation given by

M =M × {0} =M × {1} is the same on M × {1} and the opposite on M × {0}.
We need to case-study all the possible segments in F−1(S), here we only consider one as an

example. If the segment has two endpoints in M × {1}, then the outer normal vector on two
endpoints is the same on “ending point”, opposite on “starting point” of the segment.

By definition we can check the contribution to I(f1, S) is +1 for same orientation and −1 for
opposite orientation.

Summing up all these segments we’ll get I(f0, S) = I(f1, S).

Next we give some examples of intersection numbers.

Example 4.6.5 (Self-intersection number)

Let S ⊂ N be a regular closed submanifold.

I(S, S) := I(iS , S) ∈ Z

is defined to be the self-intersection number of S.
For example, let S ≃ S1 be a submanifold of 2T 2 (which has trivial normal bundle).

Clearly iS has a homotopy equivalence that has no intersection with S, so I(S, S) = 0.
In contrast, let S be a loop on a Mobius band, iS has a homotopy equivalence that

intersects with S at only one point transversally, thus I2(S, S) = 1. Note that Mobius band
is not orientable, so we can’t talk about I(S, S).
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Example 4.6.6 (Mapping degree)

Let M,N be compact smooth manifolds with the same dimensions. Let f : M → N be a
smooth map (or continuous map), we can define

deg2(f) := I2(f, q) ∈ Z2, q ∈ N.

Moreover if M,N are oriented,

deg(f) := I(f, q) ∈ Z

is defined as the degree of f .
This is independent of the choice of q, so in fact deg(f) = #f−1(q) for any regular value

q ∈ N , where the counting is modulo 2 or signed.

Some examples of mapping degrees:

Example 4.6.7

Let p ∈ C[z] as a map p̂ : Ĉ → Ĉ. The degree of the map deg p̂ = deg(p) as a polynomial.
The conjugation map z 7→ z has degree −1.

Example 4.6.8 (Pinch)

Let M be a surface, and A ⊂ M is has a boundary homeomorphic to S1. Then the map
f : M → N with f(A) = {pt}, and f |M\A embedding is called a “pinch”. Clearly it has
degree 1.

Example 4.6.9

We can construct a map fm : Sn → Sn s.t. deg fm = m, for all m ∈ Z.
When n = 1, it’s just eiθ 7→ eimθ, and to lift it in higher dimensions, we can think of Sn

as two cones fused together with common base Sn−1.

§4.7 Poicare-Hopf Theorem

Let M be a n-dimensional smooth manifold, and v is a continuous vector field on M .

Definition 4.7.1 (Isolated singular points). We say p ∈ M is an isolated singular point, if there
exists u = u(p) ⊂M s.t.

v(p) = 0⃗, v(q) ̸= 0⃗, ∀q ∈ u \ {p}.

There are a lot of situations which can happen around an isolated singular points, I’m not able
to draw them as pictures. But in general it’s pretty much like magnitic fields in physics, this might
help you imagine some of them.

If we take a small ball Bε(p), the vectors at ∂B(p) gives a map ∂B(p) → Sn−1 by their
directions, and since ∂B(p) can be identified as Sn−1, there’s an induced map Sn−1 → Sn−1, and
its degree is roughly the index of p.
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Definition 4.7.2. Let p be an isolated singular point, take a chart containing p s.t. p is the origin.
Let Dε(0) be a sufficiently small open ball in Rn, Then we have the map

∂Dε(0) → Sn−1, x 7→ v(x)

∥v(x)∥
.

Define the index of p to be
indp(v) := deg(∂Dε(0) → Sn−1).

Since we use the oriented mapping degree, we require the manifold M is oriented.

This definition involves the choices of ε and the chart.

Theorem 4.7.3 (Poincare-Hopf)

Let M be a smooth oriented compact manifold, let v be a continuous vector field whose
singular points are all isolated. ∑

p:v(p)=0

indp(v) = χ(M),

where χ(M) is the Euler characteristic.

Remark 4.7.4 — Since we haven’t define χ(M) in the courses, we’ll regard χ(M) as I(E0, E0)
where E0 is the image of zero section in TM , and the intersection number is taken in TM .

Later we can check it’s identical with χ(M) defined in other ways, such as simplicial
subdivision.

Example 4.7.5

Let ϕt : M → M be a one-parameter transformation group, and v = ∂ϕ
∂t |t=0. If v(p) = 0 and

dϕ|p : TpM → TpM doesn’t have eigenvalue 1, (i.e. it’s nondegenerate) then

indp(v) = sgn(det(I − (dϕ)p)) = ±1.

For a vector field v, denote v̂(x) := (x, v(x)) ∈ TM . Intuitively, since every section is homotopic
to zero section,

I(E0, E0) = I(v̂, E0) “=”
∑
p

indp(v)

Definition 4.7.6 (Local intersection number). Let M,N be oriented smooth manifold, S ⊂ N
oriented, regular, smooth submanifold, and dimM + dimS = dimN .

Let f :M → N be a continuous map, Ω ⊂M is open, Ω is compact in M .
Let f̃ ⋔Ω S, f̃ ≃ f and the homotopy H satisfies

H
∣∣
[0,1]×∂Ω

∩ S = ∅.

(This is to say the “endpoints” of f can’t cross S during the homotopy, so that the intersection
number stays the same.) The local intersection number is defined as

I(f, S,Ω) :=
∑

p∈f̃−1(S)∩Ω

sgn(f, S)p

Since f̃−1(S) ∩ Ω is finite by the compactness of Ω, this intersection number is well-defined.
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Remark 4.7.7 — We can define I(f, S,Ω) for f : Ω → N , with the requirements that

f ∈ C0(Ω), and f̃ ⋔Ω S and f̃(∂Ω) ∩ S = ∅.

• Homotopic invariance:

Clearly if H gives a homotopy f0 ≃ f1, if H
−1(S) ∩ ([0, 1]× ∂Ω) = ∅, we have I(f0, S,Ω) =

I(f1, S,Ω).

• Region additivity:

Let Ω1, . . . ,Ωk ⊂M pairwise disjoint. Then

I

(
f, S,

k⋃
i=1

Ωi

)
=

k∑
i=1

I(f, S,Ωi).

• “Cut out”: Let K ⊂ Ω be a compact subset, f(K) ∩ S = ∅, then

I(f, S,Ω) = I(f, S,Ω \K).

Proof of Theorem 4.7.3. Like we pointed out, if p1, . . . , ps are the singular points of v, take pre-
compact open neighborhoods Ωi = Ωi(pi), such that they are pairwise disjoint.

χ(M) = I(E0, E0) = I(v̂, E0) =

s∑
i=1

I(v̂, E0,Ωi)

All we need to show is I(v̂, E0,Ωi) = indpi
(v).

We may assume that each Ωi is an open ball D̊ε(0) ⊂ Rn in some chart.
First, WLOG that v is smooth in a neighborhood of ∂Dϵ. Choose a vector ξ ∈ v(∂Dϵ), the

index is the intersection number I(v, ξ). Hence we can define a vector field w(x) = ξ on Rn.
Intuitively I(v, ξ) = I(v, w,D(0.9ϵ,1.1ϵ)).

Let v∗(x) = ∥x∥
ϵ v(x). Then indp(v) = I(v∗, w,D(0.9ϵ,1.1ϵ)). (Need to check v∗ and w transverse)

We have

indp(v) = I(v, w,D(0.9ϵ,1.1ϵ)) = I(v,E0, D0.9ϵ,1.1ϵ) = I(v,E0, D1.1ϵ) = I(v,E0, Dϵ).

Therefore we’re done.

Remark 4.7.8 — The index is in fact a special case of winding number.
Let f :M → Rn continuous, M is a n−1 dimensional compact oriented smooth manifold.

For q /∈ f(M),

W (f, q) := deg

(
M → Sn−1, p 7→ f(p)− q

∥f(p)− q∥
.

)
This is a homotopic invariance of f .

Poincare-Hopf theorem means that different definitions of Euler characteristic are the same, at
least for orientable compact manifolds.

For a finite simplicial complex X, the Euler characteristic is defined as

χ(X) :=

∞∑
i=0

(−1)i#{i dim simplicial}.
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Theorem 4.7.9

Let M be a smooth compact manifold.

• M always have a smooth simplicial partition.

• I(E0, E0) = χ(M).

Here the smooth simplicial partition means a smooth homeomorphism g : X →M s.t. in each
m-dim simplex, the map ∆m → X →M can be extended to a C∞ map on a neighborhood of ∆m.

Proof outline. (1) can be proved by taking a Riemann metric and a cover consisting of convex
balls.

Next, for any simplicial partition of M , we can construct a vector field such that
∑

p indp(v) =
χ(M). This can be done by setting the centroid of each simplex as a singular point, and vectors
always pointing from high-dim centroid to low-dim centroids. This construction asserts that each
i-dim centroid has index (−1)i, as desired.

There are other equivalent definitions of Euler characteristics, such as

χ(X) =

∞∑
i=0

(−1)i dimFHi(X,F)

where dimFHi(X,F) is the i-th Betti number over the field F.
Since the homology group Hi(X,F) is homotopically invariant, the Euler characteristic is also

a homotopic invariance.
Recall that we learned de Rham isomorphism, thus when M is a smooth compact manifold,

χ(M) =

∞∑
i=0

(−1)i dimRH
i
dR(M)

§4.8 Gauss-Bonnet Theorem on hypersurfaces in Rn+1

Let n be an even integer, M ⊂ Rn+1 is a regular compact connected submanifold.
In this case, M is orientable, which determines a bounded reigion in Rn+1. Let the outward

normal vector determine the orientation of M , and K(x) is the Gauss curvature at the point x.

Theorem 4.8.1 (Gauss-Bonnet)

Using the above notations, we have∫
M

K(x) dArea(x) =
Area(Sn)

2
χ(M).

Here dArea(x) is the volume form on M , Area(Sn) is the surface area of n-dim sphere.
Specifically, let g =

∑
i,j gij dxi⊗dxj be the Riemann metric on M induced by Euclidean

metric,

dArea(x) :=
√
det(gij) dx1 ∧ · · · ∧ dxn.
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Remark 4.8.2 — Recall that Gauss curvature is the Jacobian determinant of Gauss-Winegarten
map, i.e. K(x) = JG(x), where

G :M → Sn, x 7→ n⃗x.

Where n⃗x is the outward normal vector at x.

Proof. There’s a fact about mapping degree: Let f :M → N , ω ∈ An(N),∫
M

f∗ω = deg(f)

∫
N

ω.

This result matches our intuition. To prove it you just need to use disk lemma and definitions of
integrals.

This tells us that ∫
M

K dArea = deg(G)

∫
Sn

dAreaSn .

Since “obviously” G∗ dAreaSn = K dArea.

Remark 4.8.3 — This needs to be checked carefully for signs, which will use the connectivity
of M to reduce the checking to only one point.

Thus we only need to show that deg(G) = χ(M)
2 . This will be done by constructing a vector

field with the sum of indexes of singular points equal to 2 deg(G).
The construction is as follows: Fix a vector a⃗ ∈ Sn, let v(x) be the orthogonal projection of a⃗

onto TxM .
v(x) = 0 ⇐⇒ n⃗x = ±a⃗.

Therefore if we take a⃗ such that ±a⃗ are both regular values of G, the vector field v only contains
isolated singular points. Now by Sard’s theorem, the critical values form a null set, clearly such a⃗
exists.

Next we take a look at the index of these singular points. Auctually, they are all non-degenerate
singular points. (Otherwise we’ll get G∗ is degenerate on the principal normal section, contradicts
with the regular value condition)

Hence we have
indx(v) = sgnx(±G), G(x) = ±a⃗.

Since n is even, sgnx(G) = sgnx(−G), summing it up we’ll get

χ(M) =
∑
x

indx(v) = 2
∑
x

sgnx(G) = 2 deg(G).

At last we look at the statement that “Rn+1 \M consist of two connected component, one is
bounded and the other is unbounded”. (Will use intersection number and tubular neighborhood)
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