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§1 Groups and Homomorphisms

§1.1 Why groups/rings/fields?

• Describe symmetry uniformly;

• Compare symmetry in different context;

• Extract the “most fundamental commmon structure”.

Example 1.1.1 (Pell’s equation)

Consider the equation x2 − Dy2 = 1, where D is a square-free integer greater than 1. We
know from high school that general solutions come from ±(x0 +

√
Dy0)

N for N ∈ Z. They
form a group Z2 × Z.

Example 1.1.2 (Elliptic curves)

The set {(x, y) ∈ Q2|y2 = x3 −Dx} ∪ {∞} is like Z? × (torsion).
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Algebra I 1 GROUPS AND HOMOMORPHISMS

§1.2 Groups

Definition 1.2.1 (Groups). A group is a pair of a nonempty set G and a binary operation
∗ : G×G→ G such that:

• (a ∗ b) ∗ c = a ∗ (b ∗ c);

• ∃ an element e ∈ G, called the identity, s.t.

∀a ∈ G, e ∗ a = a ∗ e = a.

• For any element a ∈ G, there is a−1 ∈ G, called the inverse of a, s.t. a ∗ a−1 = a−1 ∗ a = e.

The group G is called abelian or commutative if a ∗ b = b ∗ a for all a, b ∈ G.
#G or |G| is called the order of a group (possibly infinite).

Example 1.2.2

(Z,+), (Q\{0}, ·) are abelian groups.
(Zn,+) is also a group, where Zn = {residue classes modulon}.
(Q\{−1}, ∗) where a∗b = ab+a+b is also a group. In fact this is the same with (Q\{0}, ·).

Given two groups (G, ∗), (H, ◦), we can form their direct product:

(G×H, ⋆) (g, h) ⋆ (g′, h′) = (g ∗ g′, h ◦ h′).

(In algebra, g′ is NOT derivative)

Proposition 1.2.3 (Basic properties of groups)

If G is a group,

• The identity element is unique;

• The inverse of a ∈ G is unique;

• (a−1)−1 = a.

• (a ∗ b)−1 = b−1 ∗ a−1.

• a ∗ u = a ∗ v =⇒ u = v, u ∗ b = v ∗ b =⇒ u = v. (Multiply a−1 on both sides)

Proof. Trivial.

There are two conventions when writing group operations (since writing ∗ is too annoying):

• When we don’t know whether G is abelian or not, write · for ∗, and 1 for the identity.

• When we want to emphasize G is abelian, e.g. Zn, write + for ∗, and 0 for the identity, −a
for the inverse of a.
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Example 1.2.4 (Dihedral groups D2n)

The group D2n := symmtry group of a regular n-gon.
The elements are

e = identity, r = rotation counterclockwise
2π

n
, r2, . . . .

s = reflection about a symmetry axis, sr, sr2, . . . .

We can write D2n =
〈
r, s | rn = s2 = 1, srs = r−1

〉
. This notation means: take all “words”

in r, s, r−1, s−1 subject to the given relations.

Remark 1.2.5 — We can compute sris = srs−1srs−1 · · · srs = r−i.

Definition 1.2.6 (Generators). A subset S = {s1, s2, . . . , sn} of G is called generators if every
element in G can be written as a finite product of elements in S and their inverses.

An equality consisting of generators and their inverses is called a relation.
We write G = ⟨s1, s2, · · · , sn | R1, . . . , Rm⟩ if all relations can be deduced from R1, · · · , Rm.
e.g. Z6 =

〈
x | x6 = e

〉
=

〈
r, s | r2 = s3 = e, rs = sr

〉
.

Definition 1.2.7 (Symmetry groups). Let Ω be a set. Then SΩ := {bijective mapsσ : Ω → Ω}
has a structure of group.

• The identity element is idΩ;

• The group operation is composition of maps;

• The inverses are just inverse maps.

SΩ is called the symmetry group / permutation group of Ω.

When Ω = {1, 2, . . . , n}, we write Sn instead. Note that #Sn = n!.
Elements of Sn:

• Expression 1: σ =

(
1 2 3 4 5 6 7
7 5 1 3 2 6 4

)
.

• Expression 2: Consider the cycles formed by σ: we can write σ = (1743)(25)(6) = (1743)(25).

More generally, call (a1, a2, . . . , ar) a cycle, means to map ai 7→ ai+1, ar 7→ a1, and fixes
other numbers. (Here we require all ai’s to be distinct)

In general, every element of Sn can be written as a product of disjoint cycles, and disjoint cycles
commute with each other.

E.g. σ2 = (1743)2(25)2 = (14)(73), σ−1 = (25)−1(1743)−1 = (25)(1347).
Sn is nonabelian if n ≥ 3.

Problem 1.2.8. Prove that:

• Sn is generated by all transpositions (ij).

• Sn is generated by (i i+ 1).

• Sn is generated by (12), (123 . . . n).

4
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§1.3 Group isomorphisms

Definition 1.3.1 (Group isomorphisms). Two groups (G, ∗) and (H, ·) are called isomorphic if
there is a bijection ϕ : G→ H s.t.

(1) ϕ(g ∗ h) = ϕ(g) · ϕ(h), ∀g, h ∈ G;

(2) ϕ(eG) = ϕ(eH);

(3) ϕ(g−1) = ϕ(g)−1.

We write G ≃ H or ϕ : G
≃−→ H (≃ and ∼= are the same here).

Remark 1.3.2 — You can prove that (1) =⇒ (2), (3).

Example 1.3.3

exp : (R,+) → (R>0, ·) is an isomorphism. Zn → µn = {n − throots of unity} by a 7→ e
2πia
n

is an isomorphism.

The basic question in group theory is to classify all groups woth certain properties, up to
isomorphism. e.g. all groups of order 6 are isomorphic to either Z6 or S3. In paricular, D6 ≃ S3.

Definition 1.3.4 (Cyclic groups). A groupH is called cyclic if it can be generated by one element,
i.e. ∃x ∈ H, s.t. H = {xn | n ∈ Z}.

There are two kinds of cyclic groups (up to isomorphism):

(1) #H = n, then H = ⟨x | xn = 1⟩, called cyclic group of order n. This group is isomorphic
to Zn.

(2) #H = +∞, then H ∼= Z.

Definition 1.3.5 (Subgroups). A subsetH of a group G is called a subgroup, denoted byH < G,
if

(1) e ∈ H;

(2) a, b ∈ H =⇒ ab ∈ H;

(3) a ∈ H =⇒ a−1 ∈ H.

Alternatively, a subset H ⊂ G is a subgroup if and only if ∀a, b ∈ H =⇒ ab−1 ∈ H. The
proof is left as exercise.

Definition 1.3.6 (Generating subgroup). Let G be a group and A a subset,

⟨A⟩ := subgroup of G generated byA.

In fact, it is defined as
⋂
H≤G,A⊆H H.

5
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Remark 1.3.7 — When G is abelian and A = {a1, . . . , ar}, ⟨A⟩ = {ad11 a
d2
2 . . . adrr | di ∈ Z}.

This is an analogy of “linear combination” in linear algebra.

Definition 1.3.8 (Order of an element). Let G be a group, x ∈ G. Define the order of x in
G, denoted by |x|, to be the least positive integer n s.t. xn = 1. If such n doesn’t exist, define
|x| = +∞.

Note that |x| = # ⟨x⟩.

Example 1.3.9

Consider Z12 = ⟨1⟩, it’s easy to see |2| = 6, |3| = 4 and |6| = 2.

§1.4 Quotient groups

When people develop algebra theory, they often make analogy of different objects. If we look at
concepts related to vector spaces and groups, we’ll find:

Vector spaces Groups

direct sums direct products
subspaces subgroups

linear isomorphisms isomorphisms
affine spaces cosets

quotient spaces quotient groups
linear maps homomorphisms

So in what follows we’ll study the latter 3 concepts.

Definition 1.4.1 (Cosets). Let H be a subgroup of G, a (left) coset is a subset of G of the form
gH := {gh | h ∈ H} for some g ∈ G.

In particular, if g ∈ H, gH = H.
Similarly we can define a right coset to be Hg for some g ∈ G.

Remark 1.4.2 — For abelian groups, gH = Hg, there’s no distinction of the two cosets. If
we use the additive convention, we write g +H = H + g.

Proposition 1.4.3

Two cosets g1H, g2H are either equal or disjoint. In fact g−1
1 g2 ∈ H ⇐⇒ g1H = g2H.

Proof. We only need to prove that

g1H ∩ g2H ̸= ∅ =⇒ g−1
1 g2 ∈ H =⇒ g1H = g2H.

If g−1
1 g2 ∈ H, g1H = g1(g

−1
1 g2)H = g2H.

If h ∈ g1H ∩ g2H, say h = g1h1 = g2h2 for h1, h2 ∈ H. Then g−1
1 g2 = h1h

−1
2 ∈ H.

Now by the trivial fact that g1H = g2H =⇒ g1H ∩ g2H ̸= ∅, the three statements are
equivalent, hence we’ve finished the proof.

6
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Definition 1.4.4. Write G/H := {gH | g ∈ G} for the set of left cosets. Similarly, H\G := {Hg |
g ∈ G}.

Let G be a group, H a subgroup, by the previous corollary we have

G =
⊔

gH∈G/H

H.

We call #(G/H) =: [G : H] the index of H as a subgroup of G.

Theorem 1.4.5 (Lagrange’s theorem)

If G is a finite group, and H ≤ G, then #H | #G.

Proof. In fact, #G = #H · [G : H].

Corollary 1.4.6

If G is a finite group, then ∀x ∈ G, |x| = # ⟨x⟩ | #G. In particular, x#G = eG.

Proof. Note |x| = # ⟨x⟩.

Example 1.4.7 (Euler’s theorem)

Let G = (Z/NZ)× := {a mod N | (a,N) = 1}, i.e. the reduced systems modulo N . Then for
∀a ∈ G, our corollary implies:

a#G = aφ(N) ≡ 1(modN).

Corollary 1.4.8

If #G is a prime, then G is cyclic hence abelian.

Proof. Take a ∈ G, a ̸= eG. Since |a| | #G and |a| ̸= 1, we must have |a| = #G, therefore G is
cyclic.

In fact any non-identity element in G is a generator.

Definition 1.4.9. Let G be a group, a, g ∈ G, we call g−1ag the conjugate of a by g.

Lemma 1.4.10

If H is a subgroup of G and g ∈ G, then gHg−1 = {ghg−1 | h ∈ H} is a subgroup of G.

Proof. Let a, b ∈ gHg−1, say a = gh1g
−1, b = gh2g

−1, then

ab−1 = gh1g
−1gh−1

2 g−1 = g(h1h
−1
2 )g−1 ∈ gHg−1.

7
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Now we’re going to introduce quotient groups. Since the cosets are a little different from
affine subspaces (there are left and right cosets), so the quotient group can’t be defined for every
subgroup.

Definition 1.4.11 (Normal subgroups). A subgroup H ≤ G is called normal if

∀g ∈ G, gH = Hg.

This is equivalent to gHg−1 = H. We write H ⊴G for normal subgroups. e.g. {eG}⊴G,G⊴G.

For a normal subgroup H ⊴G,

aH · bH = {kl | k ∈ aH, l ∈ bH} = a(Hb)H = abHH = abH.

i.e. we have a well-defined group structure on G/H. (The identity is H, the inverse of aH is
a−1H) Notice how the condition of normal subgroup works here, in fact this is the motivation of
normal subgroups.

We call G/H a quotient group.

Proposition 1.4.12

Let H and K be subgroups of G, define HK = {hk | h ∈ H, k ∈ H}. When H,K are finite,
#(HK) = #H#K

#(H∩K) .

Proof. Let HK = h1K ⊔ h2K ⊔ · · · ⊔ hnK be a disjoint union of cosets of K.

Claim. For the same hi’s, H = h1(H ∩K) ⊔ · · · ⊔ hn(H ∩K).

Proof of the claim. For every h, h′ ∈ H,

hK = h′K ⇐⇒ h−1h′ ∈ K ⇐⇒ h−1h′ ∈ H ∩K ⇐⇒ h(H ∩K) = h′(H ∩K).

Hence the conclusion holds.

Now it’s easy to see #HK
#K = #H

#(H∩K) .

In fact we proved a natural bijection between HK/K and H/(H ∩K) by h(H ∩K) 7→ hK.

Remark 1.4.13 — HK need not be a subgroup of G. E.g. G = S3, H = ⟨(12)⟩, K = ⟨(13)⟩.
We have #HK = 4, so it’s not a subgroup.

Lemma 1.4.14

If HK = KH as a set, then HK is a subgroup of G.

Proof. For h1, h2 ∈ H, k1, k2 ∈ K,

h1k1(h2k2)
−1 = h1(k1k

−1
2 h−1

2 ) = h1h
′k′ ∈ KH.

In the latter equality we used HK = KH.

In paricular, if H is normal, we must have HK ≤ G.

8
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Lemma 1.4.15

If both H and K are normal subgroups, HK is also a normal subgroup.

Proof. By gHK = HgK = HKg we’re done.

§1.5 Group homomorphisms

Definition 1.5.1 (Group homomorphisms). Let (G, ∗), (H, ◦) be groups. A map ϕ : G → H is
called a homomorphism if

∀x, y ∈ G, ϕ(x ∗ y) = ϕ(x) ◦ ϕ(y).

Remark 1.5.2 — We have ϕ(eG) = ϕ(eG ∗ eG) = ϕ(eG) ◦ ϕ(eG) =⇒ ϕ(eG) = eH . Similarly
we have ϕ(g−1) = ϕ(g)−1.

You can think of homomorphisms as “maps that preserve algebraic structures”.

Example 1.5.3

When H ⊴G, there’s a natural homomorphism

π : G↠ G/H, a 7→ aH.

Definition 1.5.4 (Kernels). For a homomorphism ϕ : G→ H of groups, the kernel is

kerϕ := {g ∈ G | ϕ(g) = eH}.

Lemma 1.5.5

Let ϕ : G→ H be a homomorphism of groups.

• The image ϕ(G) is a subgroup of H;

• The kernel kerϕ is a normal subgroup of G.

• ϕ is injective ⇐⇒ kerϕ = {eG}.

Proof. It’s the same as linear algebra, so we only prove first two.

ϕ(g1)(ϕ(g2))
−1 = ϕ(g1g

−1
2 ) ∈ ϕ(G).

Let g1, g2 ∈ kerϕ,
ϕ(g1g

−1
2 ) = ϕ(g1)ϕ(g2)

−1 = eH =⇒ g1g
−1
2 ∈ kerϕ.

So kerϕ is a subgroup. For any h ∈ kerϕ,

ϕ(ghg−1) = ϕ(g)ϕ(g−1) = eH

thus ghg−1 ⊆ kerϕ, take g−1 in place of g, we’ll get the inverse inclusion, kerϕ⊴G.

9
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A question arises with homomorphisms, that is, how to specify a homomorphism?
Suppose G = ⟨s1, s2, . . . , sn | R1, . . . , Rm⟩.
To give a homomorphism ϕ : G→ H is equivalent to giving the values ϕ(s1), . . . , ϕ(sn) so that

ϕ(Ri) = eH for all i.

Example 1.5.6

Let’s find all homomorphisms ϕ : D2n → C× := (C\{0}, ·).
It’s enough to specify ϕ(r), ϕ(s) ∈ C× s.t. ϕ(r)n = ϕ(s)2 = 1, ϕ(s)ϕ(r)ϕ(s) = ϕ(r)−1.

Since C× is abelian, we have ϕ(r)2 = 1.
If n is odd, ϕ(r) = 1, ϕ(s) ∈ {±1}.
If n is even, ϕ(r), ϕ(s) ∈ {±1}.

Recall that in vector spaces we have Im f ∼= V/ ker f for linear map f : V → W . The same
result holds for homomorphisms:

Theorem 1.5.7 (The first isomorphism theorem)

Let φ : G→ H be a homomorphism, then kerφ⊴G,

Imφ ∼= G/ kerφ.

Proof. We define a map ψ : G/ kerφ→ φ(G) by g kerφ 7→ φ(g).
We proceed by the following:

• ψ is well-defined.

If g1 kerφ = g2 kerφ, then g
−1
2 g1 ∈ kerφ.

φ(g1) = φ(g2g
−1
2 g1) = φ(g2).

• ψ is a homomorphism.

ψ(g1 kerφ · g2 kerφ) = ψ(g1g2 kerφ) = φ(g1g2) = ψ(g1 kerφ)ψ(g2 kerφ).

• ψ is a bijection:
φ(g) = ψ(g kerϕ) =⇒ ψ surjective.

ψ(g kerφ) = eH =⇒ g ∈ kerφ =⇒ g kerφ = kerφ.

Thus kerψ = {kerφ}, ψ is injective.

Theorem 1.5.8 (The second isomorphism theorem)

Let G be a group, and A ≤ G, B ⊴G. We have AB is a subgroup of G, A ∩B ⊴A, and

AB/B ∼= A/(A ∩B).

10
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Proof. We’ve already proved AB ≤ G. Clearly B ⊴AB, and g(A ∩B)g−1 ∈ A ∩B for any g ∈ A,
which implies (A ∩B)⊴A.

Now we can construct a homomorphism ϕ : A→ AB/B by

ϕ : A ↪→ AB ↠ AB/B

with inclusion and projection map.
It’s clear that ϕ is surjective since abB = aB for any a ∈ A, b ∈ B.
Next we compute kerϕ = {a ∈ A | aB = B} = A ∩ B, thus by Theorem 1.5.7 we get

AB/B ∼= A/(A ∩B).

Theorem 1.5.9 (The third isomorphism theorem)

Let G be a group and H ≤ K are two normal subgroups of G, then K/H ⊴G/H, and

G/H

K/H
∼= G/K.

Proof. I left it out since it’s abstract nonsense. The technique is the same with the second theorem.

Theorem 1.5.10 (The fourth isomorphisn theorem)

Let G be a group and N ⊴G a normal subgroup. Then there’s a 1-1 correspondence:

{H ≤ G | N ≤ H} ←→ {H | H ≤ G/N}
A 7−→ A/N

π−1(A) 7−→A

Remark 1.5.11 (A way to think of a homomorphism from a quotient group) — Let ϕ : G→ H
be a group homomorphism, let N ⊴G be a normal subgroup.

We hope to define Φ : G/N → H by gN 7→ ϕ(g), such Φ is well-defined iff N ⊆ kerϕ. In
this case we say that ϕ : G→ H factor through G/N .

Example 1.5.12

All homomorphisms ϕ : Z→ C× are determined by λϕ := ϕ(1) ∈ C×.
To construct a homomorphism Zn = Z/nZ→ C×, we need nZ ⊂ kerϕ. This is equivalent

to λϕ is an n-th root of unity.

§2 Classifying the groups

§2.1 Simple groups

Recall that:
Ultimate goal of group theorists: Classify all finite groups (with given properties).

11
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Observe that if N ⊴G, “G ≈ N +G/N”. This leads us to study the “minimum groups”, like
prime numbers in number theory.

Definition 2.1.1 (Simple groups). A (finite or infinite) group G is called a simple group if
#G ≥ 1 and the only normal subgroups of G are {1} and G.

Example 2.1.2

If p is a prime, Zp is simple; An ⊆ Sn are simple for n ≥ 5.
There are infinite simple groups.

Holder’s program:

• Classify all finite simple groups;

• Find all ways of “putting together simple groups”.

People managed to complete the first step of this plan:

Theorem 2.1.3 (Simple Group Classification Theorem)

Every finite simple group is isomorphic to one in

• 18 (infinite) families of simple groups, e.g. SLn(Fpr )/{rIn} except small p, n ≥ 2;

• 26 sporadic simple groups.

Theorem 2.1.4 (Feit-Thompsen Theorem)

If G is a simple group of odd order, then G ≃ Zp.

Definition 2.1.5 (composition series). In a group G, a sequence of subgroups

{e} = N0 < N1 < · · · < Nk = G

is called a composition series if Ni−1 ◁Ni, and Ni/Ni−1 is simple for 1 ≤ i ≤ k.
In this case, we call Ni/Ni−1 composition factors or Jordan-Holder factors of G.

For example, {e}◁ ⟨s⟩◁
〈
s, r2

〉
◁D8, {e}◁

〈
r2
〉
◁ ⟨r⟩◁D8.

Theorem 2.1.6 (Jordan-Holder)

Let G be a finite group, G ̸= {e}, then:

(1) G has a composition series;

(2) The composition factors are unique, i.e. if we have two composition series

{e} =M0 ◁ · · ·◁Mr = G, {e} = N0 ◁ · · ·◁Ns = G.

Then r = s, and there’s a bijection σ : {1, . . . , r} → {1, . . . , s = r} s.t.

Mi/Mi−1 ≃ Nσ(i)/Nσ(i)−1.

12
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Proof of (1). If G simple, take {e}◁G.
Otherwise ∃N ◁G s.t. N is not trivial. If {e} = A0◁ · · ·◁Ar = N and {e} = B0◁ · · ·◁Bs =

G/N , let π : G↠ G/N be the projection map.
Then we have:

{e} = A0 ◁ · · ·◁Ar = π−1({e})◁ · · ·◁ π−1(Bs) = G.

(By the fourth isomorphism theorem)

Definition 2.1.7 (Solvable groups). A group G is solvable if there is a chain of subgroups

{e} = G0 ⊴G1 ⊴ · · ·⊴Gs = G

s.t. Gi/Gi+1 is abelian for i = 1, 2, . . . , s.

Remark 2.1.8 — Galois and Abel proved that a polynomial equation has radical solutions
iff the Galois group is solvable. That’s where the name comes from.

Corollary 2.1.9

For G finite group, G solvable iff all of its J-H factors are of the form Zp.

Proof. ⇐= : by definition.
=⇒ : ∃Gi as in the definition of solvable group, we just need to refine Gi/Gi−1, which is a

finite abelian group. To do this, choose x ̸= e, Zn = ⟨x⟩ ≤ H repeatedly.

Example 2.1.10

Dihedral groups D2n are solvable, as {e}◁ ⟨r⟩◁D2n.
The group of upper triangular matrices are also solvable.

Proof of Theorem 2.1.6 (2). First we can consider a toymodel in set theory:

Claim. Let X be a set with two filtrations

ϕ = A0 ⊂ A1 ⊂ · · · ⊂ Am = X, ϕ = B0 ⊂ B1 ⊂ · · · ⊂ Bn = X.

Then

(Ai−1 ∪ (Ai ∩Bj))\(Ai−1 ∪ (Ai ∩Bj)) = (Bj−1 ∪ (Aj ∩Bj))\(Bj−1 ∪ (Ai−1 ∩Bj)).

This can be observed by drawing a graph. This is just the “blocks” between Ai, Ai−1 and
Bj , Bj−1.

The corresponding group theoretic version is:

Claim. Let G be a group with two filtrations

{1} = A0 ◁A1 ◁ · · ·◁Am = G, {1} = B0 ◁B1 ◁ · · ·◁Bn = G.

13
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Then
Ai−1(Ai ∩Bj)

Ai−1(Ai ∩Bj−1)
≃ Bj−1(Ai ∩Bj)

Bj−1 ∩ (Ai−1 ∩Bj)
.

If we’ve proved this claim, we can refine the filtration to Ai−1(Ai ∩ Bj), but since Ai+1/Ai is
simple, only one j s.t. Ai−1(Ai ∩Bj) strictly increases, denote this j as σ(i).

Proof of claim. We’ll prove that these two groups are isomorphic to
Ai∩Bj

(Ai∩Bj−1)(Ai−1∩Bj)
. By sym-

metry we only need to prove one.
We first show the quotients is well-defined, i.e. subgroups are normal.
Note that Ai−1 ◁Ai, thus Ai−1 ◁Ai−1(Ai ∩Bj) ⊂ Ai. Hence Ai−1(Ai ∩Bj−1) is a subgroup,

the normality can be checked directly:

αβ(ab)(αβ)−1 = α · βaβ−1 · βbβ−1 · α−1 ∈ Ai−1(Ai ∩Bj−1).

Since a ∈ Ai−1, βaβ
−1 ∈ Ai−1. Also β ∈ Bj , b ∈ Bj−1 =⇒ βbβ−1 ∈ Bj−1.

Next we construct a homomorphism

ϕ : Ai ∩Bj ↪→ Ai−1(Ai ∩Bj)↠
Ai−1(Ai ∩Bj)
Ai−1(Ai ∩Bj−1)

.

We know ϕ is surjective because every element on RHS is of the form baAi−1(Ai ∩ Bj−1) =
bAi−1(Ai ∩Bj−1) = ϕ(b).

We only need to prove the latter equality of

kerϕ = Ai ∩Bj ∩ (Ai−1(Ai ∩Bj−1)) = (Ai ∩Bj−1)(Ai−1 ∩Bj).

This is trivial by looking at each element.
By Theorem 1.5.7 we get the result.

Remark 2.1.11 — When A ≤ G,B ≤ G, if AB ≤ G, then AB = BA since (ab)−1 = b−1a−1.

§2.2 Alternating groups

One example of composition series is {e}◁An ◁ Sn, n ≥ 5.
Recall that in Sn, every element is a product of transpositions, in fact the pairity of the number

of transpositions is fixed for each element, thus we have a homomorphism Sn → Z2. The kernel of
this homomorphism is denoted by An, the alternating group.

We also say the sign of σ ∈ Sn is sgn(σ) ∈ {±1}. Those who are familiar with math olypiads
might find this trivial. The strict definition of sgn(σ) is the sign of

∏
i<j(σ(i) − σ(j)) compared

to
∏
i<j(i− j), i.e. the number of reversed pairs in the permutation σ.

From the definition we know An ◁ Sn has index 2, so #An = n!
2 .

Theorem 2.2.1

When n ≥ 5, An is a simple group.

14



Algebra I 2 CLASSIFYING THE GROUPS

Remark 2.2.2 — When n < 5, A2 = {1}, A3 = ⟨(123)⟩ ≃ Z3, whileA4▷{1, (12)(34), (13)(24), (14)(23)} ≃
Z2 × Z2 is not simple. It’s known that a simple group of order 60 is isomorphic to A5.

Proof. Call (ijk) a 3-cycle (i, j, k distinct). We claim that An is generated by 3-cycles.
A frequently used technique: if τ ∈ Sn, then

τ(a1a1 · · · am)τ−1 = (τ(a1)τ(a2) · · · τ(am))

for any cycle (a1a2 · · · am) ∈ Sn.
By definition, An is generated by elements of the form (ab)(cd) or (ab)(ac). Note that (ab)(ac) =

(acb) is a 3-cycle, and (ab)(cd) = (acb)(acd).
Step 2, if N ◁An, and if N contains a 3-cycle ijk, then N contains all 3-cycles.
For any (σ(i)σ(j)σ(k)), if σ ∈ An, clearly it’s σ(ijk)σ−1 ∈ N by normality. Otherwise consider

σ · (ab) ∈ An, where a, b, i, j, k are distinct. Then (σ(i)σ(j)σ(k)) = σ(ab)(ijk)(ab)σ−1 ∈ N .
Step 3, suppose N ◁An is not trivial, we’ll prove that N contains a 3-cycle.
Fix σ ∈ N , σ ̸= 1. Decompose σ to disjoint cycles.

• If σ has a cycle length ≥ 4, let σ = τ(a1a2 · · · at), t ≥ 4.

N ∋ (a1a2a3)σ(a1a2a3)
−1 = τ(a2a3a1a4 · · · at) =: σ′

Consider σ−1σ′ = (a1a3at) ∈ N , we’re done.

• Otherwise σ2 has only 3-cycles, σ3 has only 2-cycles, at least one of them is nontrivial.

• σ only contains 2-cycles: σ = τ(a1a2)(a3a4), then

(a1a2a3)σ(a1a2a3)
−1σ = (a1a3)(a2a4) =: σ′ ∈ N

Take a5 different from a1, a2, a3, a4,

(a1a2a5)σ
′(a1a2a5)

−1 = (a1a2a5a4a3) ∈ N,

so we’re back to the first case.

• σ only contains 3-cycles, left as exercise.

§2.3 Finitely generated abelian groups

Recall that a group G is finitely generated if there exists a finite subset A ⊆ G s.t. ⟨A⟩ = G.

Theorem 2.3.1 (Fundamental theorem of finitely generated abelian groups)

Let G be a finitely generated abelian group, then

G ≃ Zr × Zn1
××Zns

for integers r ≥ 0, 2 ≤ n1 | n2 | · · · | ns, (| means divides). Moreover, r, n1, · · · , ns are unique.

15
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Remark 2.3.2 — r is called the rank of G, and Zr is called the free part, the other part is
called torsion part.

Proof. Abelian groups are just Z-modules, so it follows from classification of finitely generated
modules over PID (which we’ll cover later).

Lemma 2.3.3

If m,n ∈ N and m,n ≥ 2, gcd(m,n) = 1. Then Zmn ∼= Zm × Zn.

Proof. The isomorphism is given by a(modmn) 7→ (a(modm), a(modn)). By elementary number
theory we know it’s indeed an isomorphism.

Example 2.3.4

We can compute

Z30 × Z100 ≃ Z2 × Z3 × Z5 × Z4 × Z25 ≃ Z50 × Z60.

Also we can list all the abelian groups of order 72, i.e. by considering different prime
factors.

This lemma implies a variance of the theorem:

Theorem 2.3.5

Keep G as above. Then

G ≃ Zr × Z
p
r1,1
1
× Z

p
r1,2
1
× · · · × Z

p
r2,1
2
× · · ·

These r, pi, ri,j are unique under the condition ri,1 ≤ · · · ≤ ri,si .

§2.4 Different products of groups

A first question: how do we recognize direct products?

Theorem 2.4.1

Suppose G is a group with subgroups H and K, s.t.

• H and K are normal in G.

• H ∩K = {e}.

Then HK ≃ H ×K. (Typical case: G = HK)

Proof. Since HK ◁G, HK is a subgroup of G.
Consider a map φ : H ×K → HK ≤ G by (h, k) 7→ hk.

16
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We need to check φ is an isomorphism:

φ((h1, k1)(h2, k2)) = φ((h1h2, k1k2)) = h1h2k1k2 = h1k1h2k2 = φ((h1, k1))φ((h2, k2))

where the middle equality follows by the commtativity of H and K, which can be proved by
hkh−1k−1 ∈ H ∩K by the normality of H and K.

Hence φ is a homomorphism. Clearly φ is surjective, and kerφ = {hk = 1}, since hk =
1 =⇒ h = k−1 ∈ K =⇒ h = 1, similarly k = 1, hence φ is also injective, implying φ is an
isomorphism.

§2.4.1 Group action: a first glimpse

We’ve already seen in Sn that the elements of a group is a transformation on another set. Let’s
generalize this idea:

Definition 2.4.2 (Group action). Let G be a group and X a set. A (left) G-action on X is a
map

G×X → X, (g, x) 7→ g · x

such that

• ∀x ∈ X, e · x = x.

• For g, h ∈ G and x ∈ X, g · (h · x) = (gh) · x.

We sometimes write G ↷ X for group actions. (The teacher wrote a different arrow on the
blackboard which I don’t know how to type it in latex, so I use this as an alternate)

Remark 2.4.3 — The condition implies that ∀g ∈ G, x 7→ gx is a bijection with inverse
given by g−1.

Example 2.4.4

As we’ve already seen, Sn acts on X = {1, . . . , n}.
Another example is G-actions on G itself.

• Left translation: g ∈ G⇝ lg : x 7→ gx.

• Right translation: g ∈ G⇝ rg : x 7→ xg−1.

This one is a little interesting as it multiplies by g−1 instead of g. It’s because we always
assume the action is left action if we don’t specify. We can check that:

rg(rh(x)) = rg(xh
−1) = xh−1g−1 = x(gh)−1 = rgh(x)

so it’s indeed a left action.

One can check that r′g : x 7→ xg is a right action.

• Conjugation action: g ∈ G⇝ Adg : x 7→ gxg−1.

The conjugation action is better than the translations because it gives isomorphisms of groups, i.e.
Adg is an isomorphism G→ G for each g ∈ G.

Futhermore, G can act on the set of all subgroups of G by Adg : H 7→ gHg−1.

17
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Remark 2.4.5 — Given a right action, we can obtain a left action by letting g acting as g−1.
Hence usually we only study left actions.

Proposition 2.4.6

Let G be a group acting on a set X. Then we have a natural homomorphism

Φ : G→ SX := permutation group of X.

which is given by g 7→ (ϕg : x 7→ gx).
Conversely, giving a such homomorphism is equivalent to giving a G-action on X.

Proof. Just check it manually:

Φ(gh) = ϕgh = ϕg ◦ ϕh = Φ(g) ◦ Φ(h).

Definition 2.4.7. If this homomorphism Φ is trivial, i.e. Φ(g) = idX , we say that the action is
trivial. In this case, gx = x holds for all g ∈ G, x ∈ X.

If Φ is an injective, we call the action is faithful, i.e. ∀g ∈ G, if g ̸= 1, then ∃x ∈ X s.t.
gx ̸= x. (No nontrivial element of G fixes all elements of X)

Theorem 2.4.8 (Cayley’s theorem)

Every group is isomorphic to a subgroup of a permutation group. In particular if #G = n,
then G is a subgroup of Sn.

Proof. Consider G acts on itself by left translation.

Historically, the definition of groups are “subgroups of permutation groups” since groups are de-
rived from solving equations. (We’ll learn about it later) This theorem states that the abstract
definition concides with “classical definition”.

Also the proof of this theorem gives us the insight that we need to look at group actions to
study the group better.

Definition 2.4.9 (Automorphism). An automorphism of group G is an isomorphism G → G.
Let Aut(G) denote all the automorphisms of G, it is also a group with identity idG, and group
operation as composition of maps.

Clearly Aut(G) ≤ SG.

Example 2.4.10

Consider the conjugation action G ↷ G. We see that Adg ∈ Aut(G), hence this induces a
homomorphism

Ad : G→ Aut(G) ≤ SG, g 7→ Adg .

18
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Remark 2.4.11 — Slight generalization of the example: If X is itself a group, G acts on X
preserving the group structure on X, i.e. ∀g ∈ G, ϕg : X → X is a group homomorphism.
Therefore the corresponding map Φ : G→ Aut(G) ≤ SG.

§2.4.2 Semi-direct products

First we give a prototypical example:

B =

(
R× R
0 1

)
, T =

(
R× 0
0 1

)
, N =

(
1 R
0 1

)
.

It’s clear that N ◁B, T ≤ B not normal. We can see that T ∩N = {1} and B = TN .
Under conjugation, T acts on N by(

t
1

)(
1 n

1

)(
t

1

)−1

=

(
1 tn

1

)
.

We write this relation by “B = N ⋊T ”. Now we hope to reconstruct B given N , T and the action
T ↷ N .

Definition 2.4.12 (Semi-direct products). Let N and H be groups and φ : H → Aut(N) a
homomorphism. For h ∈ H write φh := φ(h) the corresponding automorphism.

Define the semi-direct product N ⋊H := N ⋊φ H to be

{(n, h) | n ∈ N,h ∈ H}, (n1, h1) · (n2, h2) = (n1φh1
(n2), h1h2).

Check the associativity:

((n1, h1)(n2, h2))(n3, h3) = (n1φh1
(n2), h1h2)(n3, h3)

= (n1φh1
(n2)φh1h2

(n3), h1h2h3)

= (n1φh1
(n2φh2

(n3)), h1h2h3)

= (n1, h1)(n2φh2
(n3), h2h3)

= (n1, h1)((n2, h2)(n3, h3))

The sets N = {(n, 1) | n ∈ N}◁N ⋊H, and H{(1, h) | h ∈ H} ≤ N ×H, since the projection
map π : N ⋊H → H has kernel N .

Remark 2.4.13 (On notation ⋊) — Since N is normal, N ⋊ H indicates N is normal (the
triangle part of ⋊).

Another interpretation is that since H ↷ N , we can change the arrow so that it looks like
N ⋊H or H ⋉N .

Remark 2.4.14 (On working with N ⋊ H = NH) — The definition of N ⋊ H requires a
homomorphism φ : H → Aut(N). Then every element in NH is of the form nh, with the
relation hnh−1 := φh(n).

Proposition 2.4.15 (Recognizing semi-direct product)

Let G be a group, N ◁ G, H ≤ G s.t. N ∩H = {1}. Then NH = HN is a subgroup of G
isomorphic to N ⋊H.

19



Algebra I 2 CLASSIFYING THE GROUPS

Proof. Since N is normal, the conjuation action of H on N preserves N . We can check semi-direct
product N ⋊Ad H ≃ NH by (n, h) 7→ nh.

Example 2.4.16

The group Z×
n acts on Zn by multiplication. The group Zn ⋊ Z×

n can be visualized by the

matrix group

(
Z×
n Zn

1

)
.

Take {±1} ⊂ Z×
n , then Zn ⋊ {±1} ≃ D2n by (a, 1) 7→ ra, (0,−1) mapsto s.

Another example is the group with order pq with p, q prime, p | q − 1. By the fact that Z×
q

is a cyclic group of order q − 1, it admits a subgroup of order p. Under the conjugation action,
Zq ⋊ Zp is a group of order pq.

An explicit example is Z7 ⋊ Z3, there are homomorphisms φ2 : Z3 → Z×
7 : b 7→ 2b mod 7 and

φ4 : b 7→ 4b mod 7.
Hence in Z7 ⋊φ2

Z3, (a1, b1)(a2, b2) = (a1 + 2b1a2, b1 + b2).
And in Z7 ⋊φ4

Z3, (a1, b1)(a2, b2) = (a1 + 4b1a2, b1 + b2).
In fact these two groups are isomorphic by (a, b) 7→ (a, 2b).

§2.5 More on group actions

Definition 2.5.1 (Orbit). Let G be a group acting on a set X (sometimes we call X a G-set).
For each x ∈ X write

StabG(x) := {g ∈ G | gx = x}

called the stabilizer subgroup of x.
For each x ∈ X, write OrbG(x) := G · x = {gx | g ∈ G}, called the orbit of x.

Proposition 2.5.2

The stabilizer StabG(x) is a subgroup of G.

Proof. For all g, h ∈ StabG(x), h
−1x = h−1hx = x, so gh−1x = gx = x =⇒ gh−1 ∈ StabG(x).

Proposition 2.5.3

For x, y ∈ X, either OrbG(x) = OrbG(y) or OrbG(x) ∩OrbG(y) = ∅. So we have

X =
⊔

orbitsO

O.

Proof. If z ∈ OrbG(x) ∩OrbG(y), suppose z = gx, z = hy for g, h ∈ G, then ∀k ∈ G,

kx = kg−1z = kg−1hy ∈ OrbG(y).
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Example 2.5.4

Let H ≤ G, H acts on G by left translation. Given g ∈ G, OrbH(g) = H · g is a right coset
of H. Similarly the right translation will give left cosets of H.

Proposition 2.5.5

For y ∈ OrbG(x), say y = gx, then

StabG(x) = g−1 StabG(y)g.

Namely, the stabilizers at different elements of one orbit are conjugate to each other.

Proof. Since h ∈ StabG(y) ⇐⇒ hy = y ⇐⇒ hgx = gx ⇐⇒ g−1hg ∈ StabG(x).

Our next goal is to understand the structure of OrbG(x).

Definition 2.5.6. Let G be a group acting on both sets X and Y . We say a map ϕ : X → Y is
G-equivariant if it preserves the group action, i.e. ϕ(gx) = gϕ(x).

Remark 2.5.7 — This is another example of algebraic structure on a set⇝ maps preserving
structures.

Definition 2.5.8. Let G↷ X, we say the action is transitive, if ∀x, y ∈ X, ∃g ∈ G s.t. y = gx.
In this case, for every x ∈ X, denote H := StabG(x). Then φ : G/H

∼−→ X is a G-equivariant
bijection by gH 7→ gx.

Proof. Indeed, φ is well-defined if g1H = g2H =⇒ g1 = g2h for some h ∈ H, thus g1x = g2hx =
g2x.

φ is surjective because G-action is transitive. It is injective because if g1x = g2x =⇒ g−1
1 g2 ∈

H =⇒ g1H = g2H.
Clearly φ is G-equivariant so we’re done.

In general, let O be an orbit, since G acts transitively on O, O = OrbG(x) ≃ G/StabG(x).
Thus

X ≃
⊔

orbitsO=Gx

G/StabG(x).

Definition 2.5.9. Two elements a, b ∈ G are called conjugate if a = gbg−1 for some g ∈ G, i.e.
a, b lies in the same orbit under G-conjugation action. Orbits of G under conjugation action are
called conjugacy classes.

The centralizer of g is defined as the stabilizer of g under conjugation action:

CG(g) := {h ∈ G | hg = gh}.

This notation can be used for general subset, i.e. CG(S) for some S ⊂ G. Clearly CG(S) =⋂
s∈S CG(s).
We say the center of G is Z(G) = {g ∈ G | gh = hg,∀h ∈ G}, i.e. CG(G).
Alternative point of view: the conjugation action induces Ad : G → Sn, the center Z(G) is

precisely the kernel of Ad.
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Finally if H ≤ G is a subgroup, define the normalizer of H to be

NG(H) := {g ∈ G | gHg−1 = H}.

Obviously CG(H) ≤ NG(H), H ◁ G ⇐⇒ NG(H) = G. NG(H) is the stabilizer of H under
conjugation action on the subgroups of G.

Example 2.5.10

If G is abelian, each conjugacy class contains only one element.
In GLn(C), the conjugacy classes ↔ the Jordan canonical form with nonzero eigenvalues.
In Sn, the conjugacy classes ↔ the partitions of n into sum of positive integers.

Theorem 2.5.11

Let G be a finite group (acting on itself by conjugation).

(1) For each g ∈ G, the number of elements in its conjugacy class OrbAd
G (g) = AdG(g) is

#AdG(g) =
#G

#CG(g)
= [G : CG(g)].

(2) We have the Class equation: If g1, · · · , gr are representatives of conjugacy classes of
G, then

#G =

r∑
i=1

[G : CG(gi)]

(3) (A more useful version) In the above formula, Orbit AdG(gi) is a singleton ⇐⇒ ∀h ∈
G, hgi = gih, i.e. gi ∈ Z(G).

#G = #Z(G) +
∑

nontriv. orbits

[G : CG(gi)].

Proof. Trivial.

Let’s look at an example of this theorem. Let p be a prime number, a finite group G is called
a p-group if #G is a power of p.

Theorem 2.5.12

For a nontrivial p-group G, Z(G) is nontrivial.

Proof. By the class equation, #G = #Z(G) +
∑

nontrivial conj class[G : CG(gi)].
Since p | #G and p | [G : CG(gi)] we get p | #Z(G). So Z(G) is nontrivial.

Automorphism group revisit:
Recall that Ad : G→ Aut(G) by g 7→ Adg. We already know ker(Ad) = Z(G), and im(Ad) =:

Inn(G) is called the group of inner automorphisms.
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Proposition 2.5.13

Inn(G)◁Aut(G).

Proof. Need to show if σ : G
∼−→ G is an automorphism, then σ Inn(G)σ−1 = Inn(G).

Take g ∈ G, we claim that σ ◦Adg ◦σ−1 = Adσ(g). Indeed,

σ ◦Adg ◦σ−1(h) = σ(gσ−1(h)g−1) = σ(g)hσ(g)−1 = Adσ(g)(h).

Hence we get σ Inn(G)σ−1 ⊂ Inn(G). The reversed inclusion follows by changing σ to σ−1.

The quotient Out(G) := Aut(G)/ Inn(G) is called the group of outer automorphisms of G.

Example 2.5.14

Consider G = GLn(Q) and the conjugation action Ad.
We know that ker(Ad) = Z(GLn(Q)) = {a · In} ∼= Q×.
Thus Inn(G) = GLn(Q)/Q× =: PGLn(Q), the projective general linear group.
As for non-inner automorphism, there is essentially one: ψ : A 7→ (At)−1. (It changes

eigenvalues, so it’s not inner)
Therefore PGLn(Q)⋊ {1, ψ}with ψ · g = (gt)−1 acts on GLn(Q) as automorphisms.

Remark 2.5.15 — Fact: Aut(SLn(Q)) = PGLn(Q)⋊ {1, ψ} for n ≥ 3, and Aut(SL2(Q)) =
PGL2(Q).

The map ψ is the “dual map” in projective space Pn, i.e. mapping lines to hyperplanes.

Another example of non-inner automorphism is: ψ : S6 → S6 as (12) 7→ (12)(34)(56). Fact:
Aut(S6) = S6 ⋊ {1, ψ}.

§3 Sylow’s theorems and applications

The main idea of Sylow’s theorem is to use an abstract method to study finite groups, and we
think of group action as a way to represent the group.

§3.1 Sylow’s theorem

Definition 3.1.1. Fix a prime nunmber p,

• A p-group is a finite group whose order is a power of p.

• If G is a group with order n = pr ·m, p ∤ m. A subgroup H of G of order pr is called Sylow
p-subgroup.

We write Sylp(G) to denote all the Sylow p-subgroups of G, np := #Sylp(G).
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Theorem 3.1.2 (Sylow’s theorems)

Let G be a finite group with #G = prm with p ∤ m,

1. Sylow p-subgroups always exist.

2. If P is a Sylow p-subgroup of G, and Q ≤ G is a p-group, then there exists g ∈ G, s.t.
Q ≤ gPg−1. This implies all Sylow p-subgroups are conjugate.

3. np ≡ 1(modp) and np | m− 1.

Proof of 1st Sylow. Induction on #G = n, when r = 0, {e} ≤ G is the Sylow p-subgroup.
Now assume 1st Sylow is proved with smaller n.

• Case 1, if p | #Z(G). Note Z(G) is a finite abelian group, by classification theorem Z(G)
has Sylow p-subgroup Z(G)p ̸= {e}.
Consider π : G↠ G/Z(G)p = G, by induction hypo, suppose H ≤ G is a Sylow p-subgroup,
then π−1(H) is a Sylow p-subgroup of G. (Counting the elements)

• Case 2. p ∤ #Z(G), use the class equation

#G = #Z(G) +
∑

nontriv orbit

#(G/Stabi).

There exists some Stabi s.t. p ∤ #G/#Stabi. Thus νp(#G) = νp(#Stabi) = r and by
induction hypo, ∃H ≤ Stabi s.t. #H = pr, i.e. H is a Sylow p-subgroup of G.

Proof of 2nd Sylow. WLOG Q is nontrivial.
Consider Q acting on cosets G/P by left translation. Set #Q = pr

′
,

#(G/P ) =
∑

orbits O

#O.

Since O = Q/Stabi, so #O is either 1 or a multiple of p. But p ∤ #(G/P ), there must be some O
with 1 element.

Therefore if O = {gP}, then ∀q ∈ Q,

qgP = gP =⇒ g−1qgP = P =⇒ q ∈ gPg−1.

Corollary 3.1.3

All Sylow p-subgroups are conjugate. In particular, there’s only one Sylow p-subgroup ⇐⇒
a Sylow p-subgroup is normal.

Corollary 3.1.4

If P is a Sylow p-group, NG(P ) = NG(NG(P )), and NG(P ) contains a unique Sylow p-
subgroup.
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Proof. Note that P ⊴NG(P ) and P is a Sylow p-subgroup of NG(P ), so clearly NG(P ) does not
contain other Sylow p-subgroups.

Take n ∈ NG(NG(P )), then nNG(P )n−1 = NG(P ). Therefore nPn
−1◁nNG(P )n−1 is another

Sylow p-subgroup, by the uniqueness of Sylow p-subgroup of NG(P ), nPn
−1 = P . This is saying

n ∈ NG(P ), and we’re done.

Proof of 3rd Sylow. Consider G ↷ Sylp(G) by conjugation. By the second Sylow’s theorem, this
action is transitive.

np = #G/#NG(P )

Since #G = prm, and #NG(P ) = prk for some integer k, this gives np | m.
Consider P ↷ Sylp(G) by conjugation, where P is a Sylow p-subgroup. Now

np =
∑

orbits O

#O.

Again, #O is either 1 or a multiple of p. If #O = 1, i.e. P = Stabi. Say O = {Q}, then
P ⊆ NG(Q) =⇒ P = Q by previous corollary.

Hence exactly one orbit (namely {P}) has only 1 element, so taking modulo p we get np ≡
1(modp).

Some easy applications:

Example 3.1.5

A group of order 132 cannot be a simple group. Since 132 = 3× 4× 11, suppose G is a simple
group of order 132, n2, n3, n11 > 1.

But n11 ≡ 1(mod11), n11 | 12 =⇒ n11 = 12. n3 ≡ 1(mod3), n3 | 44 =⇒ n3 = 4, 22.
Note that any two Sylow 11-subgroup must has trivial intersection (they are isomorphic

to Z11), thus there are at least 12× 10 = 120 elements of G if order exactly 11.
Similarly there are at least 4× 2 = 8 elements of order exactly 3.
Consider the Sylow 2-subgroups H1, H2, so #(H1 ∪ H2) ≥ 6, but 120 + 8 + 6 > 132,

contradiction!

Example 3.1.6

Consider a group G of order pq, p < q. By 3rd Sylow, nq = 1, therefore the Sylow q-subgroup
Q is normal.

Now since np | q and p | np − 1, if np = 1, G = P ×Q ≃ Zpq.
Otherwise np = q, we must have p | q − 1, we have G ≃ Zp ⋉ Zq (we’ve seen this group

before). This group is unique up to isomorphism.

Example 3.1.7

Let G be a finite group, #G = prm, N ◁G and #N = psn. Let π : G↠ G/N = G and P a
Sylow p-subgroup of G.

Now π(P ) = P ≤ G, and P ∩N ≤ N . These two groups are both Sylow p-subgroups since
s + νp(#G) = r, and ker(π|P ) = P ∩N . By counting elements of #P = #P ∩N ·#P we’ll
get the desired.
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§3.2 Commutator subgroups

Definition 3.2.1 (Commutators). For x, y ∈ G, define [x, y] = x−1y−1xy, the commutator of x
and y. Note that [x, y] = 1 ⇐⇒ xy = yx.

It’s easy to see that g[x, y]g−1 = [gxg−1, gyg−1].
Let the derived subgroup of G be

Gder := G′ = ⟨[x, y] : x, y ∈ G⟩ ,

also called the commutator subgroup of G.

Remark 3.2.2 — Caveat: It’s not true that every element of G′ is itself a commutator.

This G′ is a normal subgroup of G since the conjugates of commutators are still commutators.
Moreover G/G′ is abelian because xG′ · yG′ = yG′ · xG′ ⇐⇒ x−1y−1xy ∈ G′. In fact, G/G′ is
the “maximal abelian quotient of G”.

Lemma 3.2.3

If A is an abelian group, and φ : G→ A a homomorphism, then G′ ⊂ kerφ.

Proof. Because φ(x−1y−1xy) = 1 in A.

Thus φ factors as φ : G↠ G/G′ → A, where the latter map is φ : xG′ 7→ φ(x).
In other words, we have a bijection

Homgp(G,A)→ Homgp(G/G
′, A), φ 7→ φ.

Example 3.2.4

Let G = D2n, then G
′ contains [r, s] = r−2. Therefore

〈
r2
〉
≤ G′.

If n is odd,
〈
r2
〉
= ⟨r⟩, consider a homomorphism ψ : G→ {±1} by ψ(r) = 1, ψ(s) = −1.

Hence G′ is contained in kerψ, so G′ = ⟨r⟩.
If n is even, consider a homomorphism ψ : G→ {±1} × {±1}, by ψ(r) = (1,−1), ψ(s) =

(−1, 1). Again by our lemma, G′ ⊂ kerψ =
〈
r2
〉
, so G′ =

〈
r2
〉
.

Recall that we defined solvable groups earlier,

Definition 3.2.5. For any group G, define the following sequence of subgroups inductively,

G(0) := G,G(1) = [G,G], . . . , G(i+1) = [G(i), G(i)], ∀i ∈ N∗.

This is called the derived series or the commutator series of G.

Remark 3.2.6 — There’s an indexing convention: We use upper scripts (G•) for increasing
filtrations, and subscripts (G•) for decreasing filtrations.

An example is the group of upper triangular matrices.

26



Algebra I 3 SYLOW’S THEOREMS AND APPLICATIONS

Proposition 3.2.7

A group is solvable if and only if G(n) = {1} for some n ∈ N∗.

Proof. Note that G(i+1)◁G(1) and G(i)/G(i+1) is abelian. This proves one side of the proposition.
Conversely, if Hi is a filtration in the definition of solvable groups, note that [Hi, Hi] ≤ Hi−1.

Let G = Hr, G
(1) = [G,G] ≤ Hr−1, similarly G(2) ≤ Hr−2 and so on, then G(r) ≤ H0 = {1},

which proves the result.

Remark 3.2.8 — The smallest n ∈ Z>0 for which G(n) = {1} is called the solvable length
of G.

Definition 3.2.9 (Characteristic subgroup). Let H be a subgroup of G, H is a characteristic
subgroup if for any automorphism ϕ of G, ϕ(H) = H.

E.g. if G has only one subgroup of some order =⇒ it is characteristic.
Note that ∀g ∈ G, Adg is an automorphism, so characteristic subgroups are always normal.

Lemma 3.2.10

All G(i) are normal subgroups of G. (Moreover, all G(i) are characteristic subgroups)

Proof. If ϕ : G
∼−→ G is an automorphism,

ϕ(G(1)) =
〈
ϕ(x)−1ϕ(y)−1ϕ(x)ϕ(y) : x, y ∈ G

〉
= G(1).

We can inductively prove that

ϕ(G(i)) = [ϕ(G(i−1), ϕ(G(i−1)))] = [G(i−1), G(i−1)] = G(i).

Proposition 3.2.11

Some properties of derived subgroups:

• If H ≤ G, then H(i) ≤ G(i). So G is solvable =⇒ H is solvable.

• If π : G ↠ K is a surjective homomorphism, then π(G(i)) = K(i), so G is solvable
=⇒ K is solvable.

• If N ◁G and N , G/N both solvable, then G is solvable.

§3.3 Nilpotent groups

Definition 3.3.1 (Nilpotent groups). For a group G, define

G0 := G,G1 = [G,G], Gi+1 = [G,Gi], ∀i ∈ N∗.

Clearly G0 ▷G1 ▷ . . . , this is called the lower central series of G, and each Gi is characteristic
in G, and Gi ≥ G(i).

A group is called nilpotent if Gc = {1} for some c ∈ N∗.

27



Algebra I 3 SYLOW’S THEOREMS AND APPLICATIONS

The upper triangular matrix group is a standard example which is solvabel but not nilpotent.
While the upper triangular matrices with diagonal entries all 1 is nilpotent.

There’s a “dual picture” of nilpotent groups.

Definition 3.3.2. Let G be a group, Z0(G) = {1}, Z1(G) = Z(G). Consider π : G↠ G/Z(G) =:
G, define Z2(G) = π−1(Z(G)). (exercise: Z2(G)◁G)

Inductively, let πiG → G/Zi(G), and define Zi+1(G) = π−1
i (Z(G/Zi(G))). We get a sequence

Z0(G)◁ Z1(G)◁ . . . , called the upper central series of G.

Theorem 3.3.3

A group G is nilpotent if and only if Zc(G) = G for some c ∈ Z>0. More precisely, for c ∈ Z>0,
Gc = {1} ⇐⇒ Zc(G) = G. In this case, Gc−i ≤ Zi(G) for i = 0, 1, . . . , c.

Proof. Some complicated commutative diagrams.

In fact, by upper central series we know all p-groups are nilpotent, since its center is always
nontrivial.

Theorem 3.3.4

Let P be a p-group.

• Z(P ) ̸= {1}.

• If {1} ≠ H ◁ P is normal, then H ∩ Z(P ) ̸= {1}.

• If H is a proper subgroup of P , then H is also a proper subgroup of NP (H).

For nilpotent groups, we have the following large theorem.

Theorem 3.3.5 (Structure theorem for nilpotent groups)

Let G be a finite group of order n = pα1
1 . . . pαr

r , and Pi ∈ Sylp(G). TFAE:

(1) G is nilpotent.

(2) If H is a proper subgroup of G, then H is strictly contained in NG(H).

(3) All Sylow pi-subgroups are normal.

(4) G = P1 × P2 × · · · × Pr.

Proof. Clearly (3) =⇒ (4), by criterion of direct product. Also (4) =⇒ (1) is easy, since all
p-groups are nilpotent.

For (2) =⇒ (3), recall that for a Sylow pi-subgroup, NG(NG(Pi)) = NG(Pi). But by (2) we
must have NG(Pi) = G, thus Pi is normal.

At last, (1) =⇒ (2) is the same with last theorem, we proceed by induction on #G, and take
the center of G each time.

If Z(G) ̸⊂ H, then Z(G) ⊂ NG(H) is larger. On the other hand, since Z(G) must be nontrivial,
we can reduce the problem to G/Z(G).
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At last we introduce an interesting theorem, whose proof is too long that we’ll not include
here:

Theorem 3.3.6 (Schur-Zassenhaus Theorem)

If G is a finite group, N◁G a normal subgroup. Suppose gcd(#N,#G/N) = 1, then ∃H ≤ G
s.t.

H ↪→ G↠ G/N

is an isomorphism H
∼−→ G/N . In other words, G = N ⋊G/N .

§4 Rings

Definition 4.0.1 (Rings). A ring is a set together with two binary operators + and ·, satisfying

1. (R,+) is an abelian group (with 0 the additive unit).

2. · is associative, i.e. (a · b) · c = a · (b · c).

3. The distribution law holds in R, i.e. ∀a, b, c ∈ R,

(a+ b) · c = a · c+ b · c, a · (b+ c) = a · b+ a · c.

4. R is unital, i.e. ∃ an element 1R ∈ R, 1R ̸= 0R s.t. 1R · a = a · 1R = a, ∀a ∈ R.

We say a ring is commutative if a · b = b · a, ∀a, b ∈ R.

Remark 4.0.2 — In some cases one may not require a ring is unital. But in this course we
always assume R is unital.

Definition 4.0.3 (Fields). A ring is called a division ring or a skew field if every nonzero
element a ∈ R has a multiplicative inverse.

A commutative division ring is called a field.
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Example 4.0.4

Examples of rings:

• Z,Z/nZ,Q,R,C.

• Z[ 1N ] := { a
Nr ∈ Q, a ∈ Z, r ∈ N}.

• The polynomial ring of a ring R,

R[x] :=

∑
n≥0

anx
n, an ∈ R


is a ring. (Here we require the sum is finite sum)

• If R is a ring, then Matn×n(R) is a ring.

• The Hamiltion quaternion H = {a+ bi+ cj + dk, a, b, c, d ∈ R}. The multiplication
is given by i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. We also have
conjugation and norm in quaternion:

a+ bi+ cj + dk = a− bi− cj − dk, Nm(z) := zz = a2 + b2 + c2 + d2.

If z ̸= 0, then z−1 = z
Nm(z) , so H is a division ring.

Remark 4.0.5 — More generally, we can define

HQ,A,B := {a+ bi+ cj + dk, a, b, c, d ∈ Q}

with the relation i2 = A, j2 = B, ij = −ji = k. The others can be implied by these three
relation.

Definition 4.0.6 (Groupring). Let R be a (commutative) ring and G a (finite) group, say G =
{g1 = e, . . . , gn}. Define R[G] to be the formal linear combination of elements of G,

R[G] = {a1g1 + · · ·+ angn, ai ∈ R}.

We can define the multiplication on it naturally, with 1R[G] = 1R · eG.

Example 4.0.7

When G = Zn,
R[G] = {a0 + a1σ + · · ·+ an−1σ

n−1, ai ∈ R, σn = 1}.

When G = Z infinite, we require the sum to be finite.

§4.1 Homomorphisms

Definition 4.1.1. Let R and S be rings, a ring homomorphism is a map φ : R→ S satisfying

• φ(a+ b) = φ(a) + φ(b).
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• φ(ab) = φ(a)φ(b).

• φ(1R) = 1S .

We need to pay extra attention to the last condition.
The kernel of φ is kerφ = φ−1(0S). Similarly, φ injective iff kerφ = {0R}. φ is an isomor-

phism if φ is a bijective homomorphism.

Example 4.1.2

The modulo operation φ : Z→ Zn is a homomorphism.
If R is a commutative ring, ∀r ∈ R, ϕr : R[x]→ R by evaluation at r is a homomorphism.

When R is not commutative, this is not true.

Definition 4.1.3. Let R be a ring.

• 0 ̸= a ∈ R is called a zero-divisor if ∃0 ̸= b ∈ R, s.t. either ab = 0 or ba = 0.

• u ∈ R is called a unit in R if ∃v ∈ R s.t. uv = vu = 1.

The set of units in R is R× which admits a group structure under multiplication.

Clearly the units are not zero-divisor. A commutative ring R with no zero-divisors is called an
integral domain. In this case if a ̸= 0 and ab = ac, we can imply a(b− c) = 0 =⇒ b = c.

Lemma 4.1.4

A finite integral domain R is a field.

Proof. Consider ma : R→ R by x 7→ ax, this is a homomorphism of abelian groups, and kerma =
{0}.

Since R finite, ma is bijective, thus a must have an inverse.

In analogy of Z→ Q, we introduce the franction field. Let R be an integral domain, define the
fraction field to be

Frac(R) = {(a, b) ∈ R× (R \ {0})}/ ∼
where (a, b) ∼ (c, d) ⇐⇒ ad = bc.

Clearly Q = Frac(Z), and k(x) := Frac k[x] is the rational functions in k.

§4.2 Ideals and quotient rings

In groups we have normal subgroups to construct quotients, and the corresponding concept in
rings is the ideals.

Definition 4.2.1 (Ideals). A subset I ⊂ R is called a left ideal if

• ∀a, b ∈ I, a+ b ∈ I.

• ∀a ∈ I, x ∈ R, xa ∈ I.

Say I is a right ideal if the second condition is replaced by right multiplication, and a two-sided
ideal if it is both left and right. When R is commutative, there is no difference between left or
right ideals, hence we just say “ideal”.
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Remark 4.2.2 — Caveat: An ideal is almost never a subring! If 1 ∈ I =⇒ ∀x ∈ R,
x · 1 = x ∈ I =⇒ I = R = (1).

Remark 4.2.3 (Notations of ideals) — Let R be a commutative ring, (aj)j∈J ⊂ R is a subset.
Define

(aj , j ∈ J) =

∑
j∈J

xjaj , xj ∈ R


to be the ideal generated by (aj)j∈J , as usual we require the sum to be finite. It’s the
minimum ideal that contains all (aj)j∈J .

Example 4.2.4

When R = Z, nZ = (n) is an ideal for each n ∈ Z. Note that for example (4, 6) = 2Z = (2),
so we have (a1, . . . , an) = (gcd(a1, . . . , an)).

Definition 4.2.5 (Quotient ring). Let R be a ring, I a two-sided ideal and I ̸= R. Define the
quotient ring R/I := {x ∈ I | x ∈ R}, with operations

(x+ I) + (y + I) := (x+ y) + I, (x+ I) · (y + I) := xy + I.

We need to check multiplication is well-defined. If x′ = x+ a, y′ = y + b, a, b ∈ I, then

x′y′ + I = (x+ a)(y + b) + I = xy + I

since xb, ay, ab ∈ I by the definition of ideals.
There exists a surjective homomorphism π : R↠ R/I, such that kerπ = I.

Theorem 4.2.6 (Isomorphism theorems)

If φ : R→ S is a homomorphism of rings, then kerφ is a two-sided ideal of R and φ(R) is a
subring of S. Moreover, φ induces an isomorphism R/ kerφ

∼−→ φ(R), by x+ kerφ 7→ φ(x).

Proof. Same as groups.

The others also holds, but I won’t bother to write them all down.

Remark 4.2.7 — This can be viewed as the motivation of the definition of ideals, since we
want to make it as the kernel of some homomorphism. One can see that the conditions of
ideals are exactly the same as the kernel of a homomorphism.

Example 4.2.8

We have φ : R[G]→ R by
∑
agg 7→

∑
ag, with kerφ = (g−1, g ∈ G), called the augmentation

ideal of R[G].
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Remark 4.2.9 (Meaning of quotients) — We can think of quotient rings as “imposing re-
lations” in original rings. e.g. R[x]/(x − 1) ∼= R and the projection map is “evaluation at
x = 1”. We can think of this as imposing the relation x = 1.

Similarly R[x, y, z]/(x− y2, y − z3) is the same as imposing x = y2, y = z3 in R[x, y, z].

Definition 4.2.10 (Operations on ideals). Let I, J be two sided ideals of R,

• Define I + J = {a+ b | a ∈ I, b ∈ J}.

• Define IJ = {
∑
aibi | ai ∈ I, bi ∈ J}, where the sum is finite. The reason we’re adding the

summation is to make it closed under addition.

Note that the generators of I + J or IJ is just the sums / products of generators of I and J .

Remark 4.2.11 — Not every element of IJ are of the form ab where a ∈ I, b ∈ J . E.g.
I = (2, x) ⊂ Z[x] and 4 + x2 ∈ I2.

Example 4.2.12

Consider ϕ : R[x] → C by x 7→ i, clearly it’s surjective and kerϕ = (x2 + 1), so we have
R[x]/(x2 + 1) ∼= C.

Like we said, this quotient is requiring x2 + 1 = 0 in R[x]. But also note that ϕ′ with
x 7→ −i has the same kernel. So somehow the quotient is more intrinsic than the explicit
isomorphism.

§4.3 Chinese Remainder Theorem

We all know the classical version of this theorem in number theory.
If we look at this at a higher perspective, this is saying that the ring homomorphism

ϕ : Z→ Z/n1Z× · · · × Z/nrZ

a 7→ (a mod n1, . . . , a mod nr)

is a surjection, and the kernel is n1Z ∩ · · · ∩ nrZ = n1n2 · · ·nrZ. So

Z/n1 · · ·nrZ ≃ Z/n1Z× · · · × Z/nrZ.

If we want to generalize this theorem to rings, first we need to say what is “coprime” in rings.

Definition 4.3.1. We say two ideals I and J of a commutative ring R are comaximal if I+J = R,
i.e. 1 ∈ R can be written as 1 = a+ b for a ∈ I, b ∈ J .

Theorem 4.3.2

Let I1, . . . , Ik be ideals of a commutative ring R.

(1) Then the natural map φ : R→ R/I1×· · ·×R/Ik by x 7→ (x+ I1, . . . , x+ Ik) is a ring
homomorphism, with kernel I1 ∩ I2 ∩ · · · ∩ Ik.

(2) If I1, . . . , Ik are pairwise comaximal, then φ is surjective, and I1 ∩ · · · ∩ Ik = I1 · · · Ik.
This implies that

φ : R/I1 · · · Ik
∼−→ R/I1 × · · · ×R/Ik
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Proof. (1) is trivial. First we assume k = 2.
Clearly I1I2 ⊂ I1 ∩ I2, since 1 = a1 + a2 for ai ∈ Ii, b ∈ I1 ∩ I2 =⇒ b = a1b + ba2 ∈ I1I2.

Hence I1I2 = I1 ∩ I2.
Consider φ(a1) = (a1+I1, a1+I2) = (I1, 1+I2) (since a1 = 1−a2). Similarly φ(a2) = (1+I1, I2).

Therefore φ(x1a2 + x2a1) = (x1 + I1, x2 + I2), i.e. φ surjective.
For general k, we use induction

φ : R↠ R/I1 ×R/I2 · · · Ik ↠ R/I1 · · · Ik.

We only need to check I1 and I2 · · · Ik are comaximal. Write 1 = bi + ai with bi ∈ I1, ai ∈ Ii for
i = 2, . . . , k. Multiplying these together we get

1 =

k∏
i=2

(bi + ai) = B + a2 · · · ak.

Note that B is a sum of terms which contains at least one bi, thus B ∈ I1.

Here we need to introduce some logics (set theory) to prove a useful proposition.

Definition 4.3.3 (Partial order). A partial order on a nonempty set A is a relation ≼ on A
which is reflexive, antisymmetric and transitive. Sometimes we say A is a poset.

A chain is a subset B ⊂ A when ∀x, y ∈ B, either x ≼ y or y ≼ x.

Theorem 4.3.4 (Zorn’s lemma (This is an axiom!))

If A is a partially ordered set in which every chain B has an upper bound, i.e. ∃m ∈ A s.t.
b ≼ m for every b ∈ B. then A has a maximal element x, i.e. no element y s.t. y ≻ x.

This is equivalent to the axiom of choice, and we assume it is true most of the time.
We introduce the Zorn’s lemma just to prove one proposition.

Definition 4.3.5 (Maximal ideals). If R is a ring, a two-sided ideal m× R is called maximal if
m ̸= R and the only two-sided ideals containing m are m and R.

E.g. pZ ⊂ Z is a maximal ideal for prime p.

We can see that the maximal ideals are a generalization of primes.

Proposition 4.3.6

Every proper ideal I ⊂ R is contained in a maximal ideal of R.

Proof. Let S be the set of all proper ideals of R containing I. This is partially ordered by set
inclusion.

We want to apply Zorn’s lemma here, so we need to check the condition. For any increasing
chain of ideals · · · ⊂ Ji ⊂ . . . , i ∈ S, take J =

⋃
i∈S Ji as the upperbound. Obviously it is an ideal

containing I, and 1 /∈ Ji,∀i, so 1 /∈ J =⇒ J ̸= R.
Hence by Zorn’s lemma there’s a maximal element, which is just the desired maximal ideal.

Now we can forget about Zorn’s lemma and continuing discussing rings.
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Proposition 4.3.7

Suppose R is commutative, then an ideal m ⊂ R is maximal iff R/m is a field.

Proof. By isomorphism theorems, m is maximal iff R := R/m has only two ideals (0), (1). This is
equivalent to R is a field, i.e. every element has a multiplicative inverse.

Because ∀a ∈ R, a ̸= 0,

(a) ̸= (0) =⇒ (a) = (1) ⇐⇒ ∃b ∈ R, ab = 1.

Example 4.3.8

When R = Z[x], (p) is not a maximal ideal, since (p, g(x)) for g irreducible mod p is a larger
ideal. We can see that Z[x]/(p) ≃ Fp[x] is not a field.

When G is a finite group, R = C[G] ⊇ IG = ⟨g − 1, g ∈ G⟩ is a maximal two-sided ideal,
moreover R/IG ≃ C.

§4.4 Prime ideals

Assume R is a commutative ring.

Definition 4.4.1 (prime ideals). A proper ideal p ⊆ R is called a prime ideal if for any a, b ∈ R,
ab ∈ p =⇒ a ∈ p or b ∈ p.

This is also a generalization of primes, but these two properties yields different ideals for general
rings.

Proposition 4.4.2

An ideal p ⊂ R is prime iff R/p is an integral domain.

Proof. Let π : R→ R/p =: R. If a, b ∈ R,

ab ∈ p =⇒ ab = 0 =⇒ ab = 0 =⇒ a = 0 or b = 0.

Suppose R/p is not an integral domain, ∃a, b ∈ R, s.t. a, b ̸= 0, and ab = 0.
This means a /∈ p, b /∈ p but ab ∈ p, so p is not a prime ideal.

Corollary 4.4.3

A maximal ideal is a prime ideal.

Example 4.4.4

When R = Z[x], (p) is a prime ideal, but not maximal.
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Proposition 4.4.5 (Prime avoidance)

Let R be a commutative ring.

• Let I1, . . . , In be ideals and let p be a prime ideal containing
⋂n
i=1 Ii. Then p ⊇ Ii for

some i. In particulat, if p =
⋂n
i=1 Ii, then p = Ii for some i.

• Let p1, . . . , pn be prime ideals and let I be an ideal contained in
⋃n
i=1 pi, then I ⊂ pi

for some i.

Proof. Suppose ∃ai ∈ Ii \ p for each i. Consider a1 · · · an ∈
⋂n
i=1 Ii, this gives a contradtion since

it’s not in p. If p =
⋂
Ii, then p ⊂ Ij ,∀j. Now since p ⊇ Ii, we have p = Ii.

For the latter statement, we prove by induction on n that

I ̸⊆ pi, ∀i =⇒ I ̸⊆
n⋃
i=1

pi.

When n = 1, this is trivial. Suppose we proved this for n− 1.
By induction hypo, ∀i, ∃xi ∈ I s.t. xi /∈

⋃
j ̸=i pj . Assume that xi ∈ pi (otherwise we’re done),

consider

y =

n∑
i=1

x1 · · ·xi−1xi+1 · · ·xn ∈ I.

Since x1 ∈ p1 and x2, . . . , xn /∈ p1, y /∈ p1. Similarly y /∈ pi for all i.

Let f : R→ S be a homomorphism of commutative rings.

• If J ⊂ S is an ideal, then f−1(J) is an ideal in R. (contraction of ideals)

• If I ⊂ R is an ideal, f(I)S is an ideal in S. Note that f(I) may not be an ideal. (extension
of ideals)

Lemma 4.4.6

If J ⊂ S is a prime ideal, then f−1(J) is also a prime ideal of R.

Proof. Let φ : R
f−→ S ↠ S/J be a homomorphism. Then kerφ = f−1(J).

We have R/f−1(J) ↪→ S/J , and S/J is an integral domain. Also note that any subring of
an integral domain is also an integral domain, so R/f−1(J) is an integral domain, which means
f−1(J) is prime.

§4.5 Principal ideal domain

Again our models for rings are Z and Z[i]. Since the two definitions of primes end up in different
ideals in general rings, we wonder when they are the same.

Definition 4.5.1 (PID). A Principal Ideal Domain (PID) is an integral domain in which
every ideal is principal, i.e. can generated by one element.

The rings Z, k[x] for a field k and Gaussian integer ring Z[i] are all PIDs.
While Z[

√
−5] is not a PID since (3, 1 + 2

√
−5) is not principal.
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Proposition 4.5.2

Every non-zero prime ideal in a PID is maximal.

Proof. Let (p) be a prime ideal in R, ifM = (m) ⊇ (p) is a larger ideal containing (p), then p = ms
for some s ∈ R. Therefore ms ∈ (p) =⇒ s ∈ (p) or m ∈ (p).

If m ∈ (p), then (m) = (p). If s ∈ (p), let s = pt, we have mpt = p =⇒ mt = 1, so
(m) = R.

Next we’re going to introduce more special rings.

Rings ⊇ Integral domains ⊇ UFD ⊇ PID ⊇ ED ⊇ Fields

Definition 4.5.3 (ED). An integral domain R is said to be an Euclidean domain if there’s a
norm N : R→ Z≥0, s.t.

• N(0) = 0,

• ∀a, b ̸= 0 ∈ R, ∃q, r ∈ R s.t. a = bq + r, and r = 0 or N(r) < N(b).

Note: q, r need not be unique. The second property induces the Euclidean algorithm to find “gcd”.

Example 4.5.4

All fields F are ED, since we can take N(a) = 0 for all a ∈ F . Clearly Z and F [x] are also
EDs. Moreover the ring of Gaussian integers are ED with N(a+ bi) = a2 + b2.

Another example is Z[ζ3], with ζ3 being the 3rd root of unity.

Proposition 4.5.5

EDs are PIDs.

Proof. If I ⊂ R is a nonzero ideal, take the nonzero element in I with the smallest norm, say b ∈ I.
We claim that I = (b).

Clearly (b) ⊂ I. Conversely, for any a ∈ I, take a = bq + r for some q, r ∈ R. If N(r) < N(b),
since r ∈ I, this contradicts with the minimality of b. Hence r = 0, this means a ∈ (b).

Definition 4.5.6. Let R be an integral domain.

• For a, b ∈ R with a ̸= 0, we write a | b if b = ac for some c ∈ R. (i.e. b ∈ (a))

• A nonzero, nonunit element p ∈ R is called a prime element if (p) is a prime ideal. (i.e.
p | ab =⇒ p | a or p | b)

• Suppose r ∈ R is nonzero and nonunit. Then r is called an irreducible element if r =
ab =⇒ either a or b is a unit.

• Two elements a, b ∈ R are said to be associate if a = bu for some u ∈ R×.
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Proposition 4.5.7

Prime elements are always irreducible. Moreover if R is a PID, then irreducible elements are
prime elements.

Proof. Let p ∈ R be a prime element, and p = uv. We have either u or v is in (p). WLOG u = ps.
Therefore p = uv = psv =⇒ 1 = sv =⇒ v is a unit.

If R is a PID, p irreducible implies (p) is maximal, then (p) is a prime ideal.

Definition 4.5.8 (UFD). A unique factorization domain is an integral domain R, in which
∀r ̸= 0 ∈ R satisfies

• r is a product of irreducibles pi ∈ R, i.e. r = p1 · · · pm.

• The factorization is unique up to associates.

Two main theorems:

• PID =⇒ UFD,

• R UFD =⇒ R[x] UFD.

Example 4.5.9

Typical nonexample of UFD is Z[
√
−5], where 6 = 2 · 3 = (1 +

√
−5)(1−

√
−5).

Proposition 4.5.10

In a UFD, irreducible elements are prime elements.

Proof. Suppose p irreducible and p | ab. Therefore pr = ab, we can factor both sides into products
of irreducibles. By uniqueness of factorization, a or b contains an irreducible factor which is
associate to p.

Proposition 4.5.11

In a UFD, one can define for a, b ∈ R, a gcd of a and b as an element d s.t. d | a, d | b, if
d′ | a, d′ | b, then d′ | d.

Equivalently, we can use the language of factorization. (If d is gcd, then du is gcd,
∀u ∈ R×)

Theorem 4.5.12

PIDs are UFDs.

Proof. Existence of factorization:
Suppose r ̸= 0 ∈ R nonunit, is not finite product of irreducible elements. Clearly r is not

irreducible, so r = a1b1 with a1b1 nonunit.
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WLOG b1 is not a fin prod of irred elts, continuing this argument with b1 = a2b2, · · · , we can
write r = a1a2b2 = · · · (this needs Axiom of choice)

Then (r) ⊂ (b1) ⊂ (b2) ⊂ · · · , so
⋃
n≥0(bn) is an ideal, PID implies it equals some (b). Therefore

b ∈ (bn) for some n, (bn+1) = (bn+2) = · · · , i.e. an+1 is a unit, contradiction!
Uniqueness of factorization: induction on number of factors in r = p1p2 · · · pn = q1q2 · · · qn.

Since irreducible elements are prime elements in PID, WLOG p1 | q1, so q1 = p1u with u unit.
Therefore by induction we’re done.

§4.6 Quadratic integer rings

Definition 4.6.1 (Quadratic integer ring). Let D be a square-free integer, D ̸= 1.

O :=


Z
[√

D
]
=

{
x+ y

√
D : x, y ∈ Z

}
, D ≡ 2, 3(mod4)

Z

[
1 +
√
D

2

]
=

{
x+ y

√
D

2
: x, y ∈ Z

}
, D ≡ 1(mod4)

This is an analog of Z ⊂ Q for O ⊂ Q[
√
D].

We can define the conjugate and norm on O as x+ y
√
D = x − y

√
D and N(x + y

√
D) =

x2 −Dy2. (N(a) = a · a for all a ∈ O) Note that N(O) ⊂ Z even if D ≡ 1(mod4).
The reason we’re setting this difference is that elements of O can be classified as roots of some

monic integer coefficient polynomial.

Lemma 4.6.2

For an element u ∈ O, u ∈ O× ⇐⇒ N(u) = ±1.

Proof. Trivial. Use N(u) = uu.

As you might guess, this ring is closely related to Pell’s equation in number theory. Since

x2 −Dy2 = ±1 ⇐⇒ N(x+ y
√
D) = ±1 ⇐⇒ x+ y

√
D ∈ O×,

so solutions of Pell’s equation corresponds to O×, which is a group. From math olympiads we
know when D > 0, O× = ±(x0 + y0

√
D)Z for a fundamental unit x0 + y0

√
D.

Remark 4.6.3 — Fact. For quadratic O, O UFD ⇐⇒ PID.
A theorem states that when D < 0, only 9 D s.t. OD is UFD/PID. A conjecture states

that when D > 0, there are infinitely many D s.t. OD is UFD/PID.

Theorem 4.6.4

A prime p is the sum of two squares of integers p = x2 + y2 for x, y ∈ Z if and only if p = 2
or p ≡ 1(mod4).

In fact, the irreducible elements in Z[i] are (up to associate)

• 1 + i with norm 2;

• the primes p ≡ 3(mod4) with norm p2.

• x+ yi and x− yi if x2 + y2 = p for x, y ∈ Z and p ≡ 1(mod4) a prime, with norm p.
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Proof. Step 1. If π ∈ Z[i] has norm N(π) = p a prime, then π is irreducible. (triv.)
Step 2. For every irreducible element π ∈ Z[i], N(π) = p or p2 for some prime p.
Look at (π) ∩ Z, a prime ideal of Z. (this is i−1((π)) for inclusion map i) Say (p) = (π) ∩ Z,

then p = πa for some a ∈ Z[i]. Hence N(p) = p2 = N(π)N(a).

• N(π) = p2 =⇒ N(a) = 1 =⇒ π is an associate of p.

• N(π) = p =⇒ p = ππ, both π and π are irreducible elements in Z[i].

Step 3. Look at the case p = 2, p ≡ 3(mod4) and p ≡ 1(mod4) separately to get the result.
In fact we only need to show p ≡ 1(mod4) is not irreducible. (This reduce to the elementary

number theory)
We can take a ∈ (Z/pZ)× of order 4 (need the existence of primitive roots), so p | a2 + 1 =

(a+ i)(a− i). But clearly p ∤ a± i, p must not be irreducible.

Remark 4.6.5 — The norm map is actually the determinant of the linear map

N(x+ yi) = det(Q(i)→ Q(i) : z 7→ (x+ yi)z).

as a 2-dimensional vector space over Q. From this we can easily deduce some properties of
norm.

When we’re dealing with non-UFD’s, such as Z[
√
−5], we know 6 = 2×3 = (1+

√
−5)(1−

√
−5),

people wonder whether we can write 2 = ab, 3 = cd, 1 +
√
−5 = ac, 1 −

√
−5 = bd for some

“numbers” a, b, c, d. It turns out that such numbers don’t exist, so people used to call it “ideal
numbers”, and this is how the name “ideal” come from.

Using the ideals, we can indeed write

p1 = (2, 1 +
√
−5), p2 = (2, 1−

√
−5), p3 = (3, 1 +

√
−5), p4 = (3, 1−

√
−5).

So we’ll get (2) = p1p2 and so on. In light of this we introduce:

Definition 4.6.6 (Dedekind domains). We say an integral domain R is a Dedekind domain if
every ideal can be written as a product of prime ideals.

We can prove that every quadratic integer ring is a Dedekind domain. This kind of rings has
significant position in number theory.

Theorem 4.6.7

Let R be an integral domain. Then R is UFD ⇐⇒ R[x] is UFD.

Proof. Assume R[x] is UFD. Let r ∈ R is nonzero and nonunit. Then r = p1 · · · pm for pi ∈ R[x]
irreducible.

By comparing the degree of both sides, we get pi ∈ R since they must be constant polynomial.
Also they are irreducible in R[x], so clearly they are irreducible in R.

The uniqueness also follows from the uniqueness in R[x].
Conversely, first we prove a lemma.
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Lemma 4.6.8 (Gauss’ Lemma)

Let R be a UFD, F = Frac(R). Let p(x) ∈ R[x]\{0} be reducible in F [x], then it’s also
reducible in R[x].

More precisely, if p(x) = A(x)B(x) in F [x], there exists r ∈ F× s.t. rA(x), r−1B(x) ∈
R[x].

Proof of lemma. Take d1, d2 ∈ R\{0} such that d1A(x), d2B(x) ∈ R[x]. Let d = d1d2, we have
dp(x) = a(x)b(x) in R[x].

If d ∈ R×, then we’re done. Otherwise write d = p1 · · · pn, pi ∈ R irreducible. Since pi are
primes, R/(pi) is integral. Hence (R/(pi))[x] is an integral domain as well.

Therefore 0 = a(x)b(x) modulo (pi), by properties of integral domain, WLOG a(x) = 0, this
means p−1

i a(x) ∈ R[x]. (Here p−1
i ∈ F .)

We can do this for each pi, so we can cancel out all the pi’s, which induces p(x) reducible in
R[x].

Returning to the theorem, let a(x) ∈ R[x] nonzero and nonunit.
Let d be a gcd of coefficients of a(x), a(x) = da1(x). Since d ∈ R, which is a UFD, we only

need to factor a1(x).
Now we use the fact that F [x] is UFD, a1(x) = A1(x) · · ·Ar(x) in F [x].
By Gauss’ Lemma, we can adjust Ai(x) to Bi(x) ∈ R[x] s.t. a1(x) = B1(x) · · ·Br(x), which is

a factorization in R[x].
By the gcd of coefficients is 1 and Bi(x) irreducible in F [x] we deduce Bi(x) are irreducible in

R[x], which proves the existence part.
As for the uniqueness, we can use the uniqueness in F [x] and the uniqueness in R.

Corollary 4.6.9

Let R be a UFD, then R[x1, . . . , xn] = R[x1, . . . , xn−1][xn] is a UFD.

Next we’ll introduce some methods to determine whether a polynomial is irreducible or not.
Let F be a field. Let f ∈ F [x] with degree 2 or 3. Clearly f irreducible ⇐⇒ f has no roots

in F .
Recall that in elementary number theory, we have a criterion for rational roots.

Proposition 4.6.10

Let f(x) = anx
n+ · · ·+ a0 ∈ Z[x]. If f( rs ) = 0 with r, s ∈ Z, gcd(r, s) = 1, then r | a0, s | an.

Proposition 4.6.11 (Eisenstein’s criterion)

Let R be an integral domain. f(x) = xn + cn−1x
n−1 + · · ·+ c0 ∈ R[x]. Suppose there exists

a prime ideal p of R s.t. c0, . . . , cn−1 ∈ p, but c0 /∈ p2, then f is irreducible.

Proof. Assume by contradiction f is reducible, say f(x) = a(x)b(x).
Taking modulo p we get xn = a(x) · b(x) in (R/p)[x], which is integral.
By uniqueness of factorization in Frac(R/p)[x], we know a(x), b(x) are of the form xr.
Specifically, the constant term of a(x) and b(x) are in p =⇒ c0 ∈ p2, contradiction!
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Example 4.6.12

Let p be a prime, write Φp(x) = xp−1
x−1 be the cyclotomic polynomial of order p. Φp(x)

is irreducible in Z[x], since Φp(x + 1) = (x+1)p−1
x . By Eisenstein’s criterion we know it’s

irreducible.

Proposition 4.6.13

Let F be a field.

• f(x) ∈ F [x] irreducible ⇐⇒ F [x]/(f(x)) is a field.

• f(x) = p1(x)
n1 · · · pr(x)nr , by CRT we have

F [x]/(f(x)) ∼= F [x]/(p1(x)
n1)× · · · × F [x]/(pr(x)nr ).

• If f(x) has root α1, . . . αk ∈ F , then (x−α1) · · · (x−αk) | f(x). So the number of roots
is no more than the degree of f .

Proof. Note that f(x) irreducible ⇐⇒ f(x) prime ⇐⇒ (f(x)) is a prime ideal ⇐⇒ (f(x)) is a
maximal ideal ⇐⇒ F [x]/(f(x)) is a field. (F [x] is a PID)

Corollary 4.6.14

Let F be a field. Then any finite subgroup G of F× is cyclic.

Proof. Since G is abelian, we can write

G ∼= Z/n1Z× · · ·Z/nrZ, ni | ni+1.

If G is not cyclic, nr < #G. Therefore ∀x ∈ G, xnr = 1 =⇒ xnr has #G roots in F ,
contradiction!

There’s a missing lecture note on November 16, Thursday, it’s about modules and the classifi-
cation theorem of finitely generated modules on PIDs.

§4.7 Fundamental theorem of finitely generated modules over a PID

Theorem 4.7.1

Let R be a PID and M a finitely generated R-module. Then

M ≃ R⊕r ⊕R/(a1)⊕ · · · ⊕R/(an)

with a1 | · · · | an, ai ∈ R. Such r, a1, . . . , an are unique (up to associates).

We previouly proved that
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Lemma 4.7.2

Let R be a PID, M a free R-module of rank m and N a submodule of M . Then

• N is free of rank n, n ≤ m.

• There exists a basis y1, . . . , ym of M so that a1y1, . . . , anyn is a basis of N and ai ∈ R
satisfying a1 | · · · | an.

Proof of Theorem 4.7.1. Existence:
Suppose M fin. gen., then there exists a surjective homomorphism ϕ : R⊕m ↠ M . Applying

our lemma to kerϕ ⊂ R⊕m, write R⊕m = Ry1⊕· · ·⊕Rym, and kerϕ = Ra1y1⊕· · ·⊕Ranyn, then
we have

M = R⊕m/ kerϕ =
Ry1
Ra1y1

⊕ · · · ⊕ Ryn
Ranyn

⊕Ryn+1 ⊕ · · · ⊕Ryn.

For the uniqueness part, by CRT we know that for a ∈ R nonzero, nonunit, if it factors as
a = pα1

1 · · · pαr
r in R, then

R/(a) ≃ R/(pα1
1 )× · · · ×R/(pαr

r ).

Thus we have an alternative version of this theorem in prime powers, it suffices to deal with each
prime element p.

We can compute prM/pr+1M to get the results. Fact:

Lemma 4.7.3

If p, q ∈ R are prime elements, (p) ̸= (q), r, s ∈ N.

• If M ≃ R, then M/prM ≃ R/(pr), prM/pr+1M ≃ (pr)/(pr+1) ≃ R/(p).

• If M ≃ R/(ps), then prM = prR/psR if r < s and 0 otherwise.

• If M ≃ R/(qs), prM =M . (This is trivial since (pr, qs) = (1).)

Applying the lemma, let Fi = R/(pi) be a field. consider dimFi
(M/piM), it is equal to

r +#{αij ≥ 1}. Similarly dimFi(p
β
iM/pβ+1

i M) = r +#{αij ≥ β}, so αij ’s are unique.

§5 Fields

§5.1 Basics

Definition 5.1.1 (characteristics). The characteristic of a field F , denoted by char(F ), is the
smallest positive integer p s.t. p · 1F = 0 if such p exists, and 0 other wise.

Remark 5.1.2 — If char(F ) > 0, then it must be a prime. because if char(F ) = mn, then
mn = 0 in F , which implies m or n is 0 in F .

Definition 5.1.3. The prime field of a field F is the smallest subfield of F containing 1F .
It is Fp if char(F ) = p > 0 or Q if char(F ) = 0.

If F ⊆ K is a subfield, we say K is a field extension of F . Sometimes we call F the base
field. Any field E s.t. F ⊆ E ⊆ K is called an intermediate field.

Often we’ll write K/E/F for this relation. (K over E over F )
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Definition 5.1.4. Note that if F ⊆ K, then K is an F -vector space. The degree of a field
extension K/F is [K : F ] = dimF K.

The extension is finite / infinite if [K : F ] is finite / infinite.

Theorem 5.1.5 (Tower law)

Let F ⊆ E ⊆ K be field extensions. Then [K : F ] = [K : E] · [E : F ].

Proof. Let m = [K : E], n = [E : F ].
Let β1, . . . , βm be an E-basis of K, α1, . . . , αn be an F -basis of E. Just write every element of

K explicitly as linear combinations of αjβi, and check that αjβi’s are linearly independent.

K

E

F

[K:E]=m

[E:F ]=n

[K:F ]=mn

Lemma 5.1.6

All homomorphisms between fields are injective.

Proof. Let η : F → E a homomorphism of fields. Since ker η is an ideal of F , it must be {0} or F .
But we require η(1F ) = 1E , thus ker η = {0}, hence η is injective.

From this we know any homomorphism η : F → E realize E as an extension of F .
Let F be a field, we can construct field extensions by polynomials. Let p(x) ∈ F [x] be an irre-

ducible polynomial of degree n, since (p(x)) is a prime ideal hence maximal ideal, K := F [x]/(p(x))
is a field containing F .

Setting θ := x mod (p(x)), then

K = {a0 + a1θ + · · ·+ an−1θ
n−1 | ai ∈ F},

so dimF K = deg p(x) = n. Note that p(z) = 0 has a zero θ in K.

Example 5.1.7

Consider R[x]/(x2 + 1)
∼−→ C. Note that x2 + 1 has two roots in C, so there are two isomor-

phisms η1 : ax+ b 7→ ai+ b and η2 : ax+ b 7→ −ai+ b.
Hence in practice we view R[x]/(x2 + 1) as an abstract extension of R, it has two “real-

izations” η1, η2 to be isomorphic to C.
Another example is K = Q[x]/(x3 − 2), it has 3 realizations into C, i.e.

Q(
3
√
2) ≃ Q(e

2πi
3

3
√
2) ≃ Q(e

4πi
3

3
√
2)

A third example is K = F2/(x
2 + x+ 1), it is a field with 4 elements.
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Definition 5.1.8. Let K be a field extension of F ,r and let α1, . . . , αn ∈ K. F (α1, . . . , αn) is
defined as the smallest subfield of K containing F and α1, . . . , αn, called the field generated by
α1, . . . , αn.

If K = F (α) for some α ∈ K, we say K/F is a simple extension. E.g. Q(
√
2,
√
3) =

Q(
√
2 +
√
3) is a simple extension.

Theorem 5.1.9

Let K/F be a field extension and let α ∈ K. We have a dichotomy :

• 1, α, α2, . . . are linearly independent over F , in this case, F (α) ≃ F (x) = Frac(F [x]).

• They are linearly dependent over F . Then there exists a unique monic polymonial
mα(x) ∈ F [x], that is irreducible over F and mα(α) = 0.

This mα is called the minimal polynomial of α. In this case F (α) ≃ F [x]/(mα(x))
and the degree is degmα.

Proof. Case 1: ϕ : F [x] → K is an injective homomorphism by x 7→ α. This extends to a
homomorphism ϕ : Frac(F [x])→ K, since g(α) ̸= 0 whenever g ̸= 0. So F (α) = Imϕ ≃ F (x).

Case 2: ϕ : F [x] → K is not injective. Then kerϕ = (p(x)) for some p(x) ∈ F [x]. But
F [x]/(p(x)) ⊂ K is an integral domain, p(x) must be a prime element.

§5.2 Algebraic extensions

Definition 5.2.1. In the above theorem, if the first case occurs, we say α is transcendental
over F . Otherwise we say α is algebraic over F .

We say that extension K/F is algebraic if every element of K is algebraic over F , i.e. ∀α ∈ K,
[F (α) : F ]is finite.

It seems that algebraic extensions are finite in some sense.

Example 5.2.2

The field Q(
√
2,
√
3,
√
5, . . . ) is an algebraic extension but not finite.

Theorem 5.2.3

The following are equivalent for a field extension K/F .

(1) K/F is finite.

(2) K/F is finitely generated and algebraic.

Proof. (1) =⇒ (2) is trivial since K is a finite dimensional vector space over F . (In fact we have
a corollary [F (α) : F ] | [K : F ].)

The converse statement needs some lemma.

Lemma 5.2.4

Given K ∋ α, then degmα,E ≤ degmα,F . (K/E/F are field extensions)
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Proof. Sincemα,F (α) = 0, view it in E[x] impliesmα,F ∈ (mα,E(x)), thusmα,E | mα,F in E[x].

Corollary 5.2.5

[E(α) : E] ≤ [F (α) : F ].

Definition 5.2.6. Let K/F be field extension and E1, E2 are intermediate fields. Define E1E2 to
be the minimal field that contains both E1 and E2, called the composite of E1 and E2.

K

E1E2

E1 E2

F

Lemma 5.2.7

Suppose [Ei : F ] <∞. Then [E1E2 : F ] ≤ [E1 : F ] · [E2 : F ].

Proof. Write E1 = F (α1, . . . , αn). By corollary, [E2(α1) : E2] ≤ [F (α1) : F ], [E2(α1, α2) :
E2(α1)] ≤ [F (α1, α2) : F (α1)], . . . .

Multiplying them together, by tower law we get [E1E2 : E2] ≤ [E1 : F ].

Proof of (2) =⇒ (1). Let K = F (α1, . . . , αn) be an algebraic extension. Then

[K : F ] ≤
∏

[F (αi) : F ] < +∞.

Corollary 5.2.8

Suppose in a field extension K/F , α, β ∈ K are algebraic over F . Then α + β, α − β, αβ, αβ
are all algebraic over F .

Proof. They are all in F (α, β) which is finite over F .

So {α ∈ K : α algebraic over F} is a subfield of K, called the algebraic closure of F in K.

Example 5.2.9

Consider C/Q, the algebraic closure is denoted by Qalg. It consists of zeros of monic polyno-
mials of f(x) ∈ Q[x].

Thus similarly we can define the algebraic integers Zalg to be the zeros of monic poly-
nomials of f(x) ∈ Z[x], which coincides with previous definition of OK of quadratic integer
rings.
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Theorem 5.2.10

If K/E and E/F are algbraci extensions, then K/F is algebraic.

Proof. Let α ∈ K, its minimal polynomial mα(x) over E is xn + cn−1x
n−1 + · · ·+ c0. Since each

ci ∈ E are algebraic over F , and F (c0, . . . , cn−1)/F is finite, so F (α, c0, . . . , cn−1)/F is finite.

§5.3 Splitting fields and normal extensions

Definition 5.3.1. Given a field F and a polynomial f(x) ∈ F [x] of degree n. A field extension
K/F is called a splitting field of f(x), if

• f(x) splits completely in K[x], i.e. f(x) = c(x−α1) · · · (x−αn) for c ∈ K×, α1, . . . , αn ∈ K.

• K = F (α1, . . . , αn).

Example 5.3.2

Q(
√
d) is the splitting field of x2 − d.
But if f(x) = x3 +Ax+B, Q[x]/(f(x)) is typically not a splitting field. If f(x) = x3 − 2,

then Q( 3
√
2, ζ3) is a splitting field of f(x). Note that it’s also a splitting field of the minimal

polynomial of 3
√
2 + ζ3, which is of degree 6.

Remark 5.3.3 — If E is a finite extension of F inside K and K/F is a splitting field of
f(x) ∈ F [x]. Then K is a splitting field of f(x) over E.

Theorem 5.3.4

For any field F and f(x) ∈ F [x] of degree n, a splitting fieldK of f(x) over F exists. Moreover
[K : F ] ≤ n!.

Proof. Use induction on deg f = n. The case n = 1 is trivial.
Suppose the theorem is proved for 1, . . . , n− 1. Let p(x) be an irreducble factor of f(x).
Then E := F [x]/(p(x)) is a field extension of F of degree deg p ≤ n over which p(x) has a zero.

Thus f(x) = (x − θ) · g(x) in E[x], where deg g = n − 1, by induction hypo we’re done. (take a
splitting field K/E of g(x))

Example 5.3.5

The splitting field of xn − 1 is Q(ζn), the n-th cyclotomic field. We’ll see later [Q(ζn) : Q] =
φ(n).

We can discuss the “uniqueness” of splitting field.

Lemma 5.3.6

If η : F
∼−→ F̃ is an isomorphism of fields, and p(x) ∈ F [x] irreducible, then p̃(x) := η(p(x)) is

irreducible in F̃ [x]. Moreover F [x]/(p(x))
∼−→ F̃ [x]/(p̃(x)).
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Proof. Trivial.

Example 5.3.7

Let η : Q(
√
2)→ Q(

√
2) by a+ b

√
2 7→ a− b

√
2.

Using the lemma we can get

Q
(√

5 +
√
2

)
≃ Q

(√
2
)
[x]/

(
x2 − 5−

√
2
)

∼−→ Q
(√

2
)
[x]/

(
x2 − 5 +

√
2
)
≃ Q

(√
5−
√
2

)
.

Lemma 5.3.8

Let η : F
∼−→ F̃ be an isomorphism and f(x) ∈ F [x]. If E is a splitting field of f(x) over F ,

and Ẽ is a splitting field of f̃(x) over F̃ .

Then there exists an isomorphism σ : E → Ẽ restricting to F → F̃ .

Proof. Will prove for the splitting field K constructed earlier, we have the following diagram

E K Ẽ

F F F̃

∼ ∼

Claim 5.3.9. If η : F
∼−→ F̃ is an isomorphism, and Ẽ an extension of F̃ on which η(f(x)) splits

completely. Then η extends to σ : K → Ẽ.

Proof. Induction on deg f = n. At each step, since η(p(x)) has a zero in Ẽ, say α.

Thus exists a homomorphism σL : L = F [x]/(p(x))→ Ẽ by x 7→ α. Repeating this step we’re
done.

By claim we get σ : K ↪→ Ẽ. Since f̃(x) splits in σ(K), it must be an isomorphism.

This lemma tells us that different splitting fields are isomorphic.
Observe that if K/F are extensions, E, Ẽ are intermediate fields which splits a polynomial

f(x) ∈ F [x]. Then E = Ẽ because f(x) splits in E as c(x − α1) · · · (x − αn), and in Ẽ as

c′(x− β1) · · · (x− βn). View this in K we know the roots are the same, hence E = Ẽ.
Another observation is that, if K/E/F are field extensions, E is a splitting field of some

polynomial of f(x) ∈ F [x], then ∀ automorphism σ : K
∼−→ K s.t. σ|F = id, we have σ(E) = E.

(because σ(E) splits σ(f) = f .)
An intrinsic definition of splitting field gives normal extensions:

Definition 5.3.10. An algebraic extensionK/F is called normal if for any irreducible polynomial
f(x) ∈ F [x] that has a zero in K, f(x) splits completely in K.

Theorem 5.3.11

A finite extension K/F is normal if and only if it is the splitting field of some f(x) ∈ F [x].

48



Algebra I 5 FIELDS

Proof. Let K = F (α1, . . . , αr) for α1, . . . , αr ∈ K. Since the minimal polynomial mαi
(x) ∈ F [x]

splits in K, K is the splitting field of f(x) =
∏
mαi

(x).
Conversely, assume thatK/F is the splitting field of f(x) ∈ F [x], if p(x) ∈ F [x] is an irreducible

polynomial that has a zero α in K.
Let L be the splitting field of p(x) over K, hence also the splitting field of p(x)f(x) over F .

Let β ̸= α be another zero of p(x) in L.

∃η : F (α)
∼−→ F (β), α 7→ β

which is an isomorphism s.t. η|F = id. But L is a splitting field of f(x)p(x) over both F (α) and
F (β), there exists an isomorphism σ : L

∼−→ L extending η.
But K/F is a splitting field, σ(K) = K by previous observation. In particular σ(α) = β ∈ K,

so L = K.

Corollary 5.3.12

If K/F is finite and normal, then for any intermediate field E, K/E is normal.

Proof. Because K/F is the splitting field of f(x), K/E is the splitting field of the same polynomial.

Remark 5.3.13 — This does not imply E/F is normal in above theorem, e.g. Q( 3
√
2, ζ3)/Q( 3

√
2)/Q.

Definition 5.3.14. IfK/F is an algebraic extension, a normal closure ofK/F is a field extension
L/K s.t.

• L/F is normal;

• If L ⊇ L′ ⊇ K is such that L′/F is normal, then L = L′.

Lemma 5.3.15

A normal closure of a finite extension K/F exists and is unique up to (some) isomorphism.

Proof. Existence: say K = F (α1, . . . , αr) and f =
∏
mαi

. Take L to be the splitting field of f
over K.

Uniqueness: If L′ is another normal closure of K/F . Since f(x) splits completely in L′, L is a
splitting field of f over K, ∃L ↪→ L′. By the minimality we get L = L′.

Remark 5.3.16 — For algebraic extension K/F , we can take the union of all finite normal
closures to prove the theorem.

Example 5.3.17

Splitting field of xp − t over F = Fp(t).
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§5.4 Separable extensions and finite fields

Recall that a field F of charF = p > 0 is perfect if the Frobenius map σ : F → F, x 7→ xp is an
isomorphism.

The typical non-example is F = Fp(t), then t cannot written as a p-th power of an element.

Let K = Fp(t
1
p ), we see that the minimal polynomial of t

1
p is xp − t, it factors as (x− t

1
p )p in

K, so the non-perfectness comes from the multiple roots.
To determine whether a polynomial has multiple roots, we’ll make use of the derivatives.

Definition 5.4.1 (Formal derivative). Let F be a field, f(x) = a0 + a1x+ · · ·+ anx
n ∈ F [x] is a

polynomial. Define D(f)(x) = a1 + 2a2x+ · · ·+ nanx
n−1 to be the formal derivative of f .

Note that this formal derivative satisfies Lebniz’s law.

If f(x) = x(x−α1)
e1 · · · (x−αr)er ∈ F [x] with αi pairwise distinct, we say αi is a zero of f(x)

with multiplicity e1.
Just like we do in real or complex numbers, we have:

Theorem 5.4.2

Let f(x) ∈ F [x] with deg f ≥ 1, it has no repeated roots in its splitting field K if and only if
(f(x), D(f)(x)) = (1).

Proof. On one hand, since
f(x)p(x) +D(f)(x)q(x) = 1 ∈ K[x]

If (x− α)2 | f(x), we have (x− α) | D(f)(x), which implies (x− α) | 1 in K[x], contradiction!
On the other hand, suppose (d(x)) = (f(x), D(f)(x)). Therefore d(x) | f(x) = (x−α1) · · · (x−

αn) with αi distinct. But D(f)(αi) =
∏
j ̸=i(αi − αj) ̸= 0, d(x) must be a constant, i.e. (d(x)) =

(1).

Corollary 5.4.3

If f(x) is an irreducible polynomial in F [x]. Then either

• f(x) has repeated roots in its splitting field, this is equivalent to D(f)(x) = 0.

• or f(x) has no repeated roots, call f separable.

Proof. If f(x) has repeated roots, then (f(x), D(f)(x)) ̸= (1). But f(x) irreducible, thus f(x) |
D(f)(x). However degD(f)(x) < deg f(x), D(f)(x) must be 0.

Corollary 5.4.4

If charF = 0, all irreducible polynomials are separable. (since they must have nonzero
derivatives)

Next let’s look at when will the derivative D(f)(x) = 0. Clearly, we have
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Corollary 5.4.5

If charF = p > 0, and f(x) is inseparable, then f(x) = g(xp) for some g ∈ F [x] irreducible.
Moreover, this can happen only when F is imperfect.

Proof. Let f(x) = a0 + a1x + · · · + anx
n irreducible. When p ∤ i, since D(f)(x) = 0 =⇒ iai =

0 =⇒ ai = 0. Thus f(x) = g(xp), and g irreducible since f irreducible.
If the field F is perfect, write aip = bpi ∈ F , we can factorize f(x) as∑

aipx
ip =

∑
bpi x

ip =
(∑

bix
i
)p
.

By isomorphism given by Frobenius map.

Corollary 5.4.6

If charF = p > 0, all irreducible polynomials in F [x] are of the form f(x) = g(xp
e

) for a
separable g. f(x) in its splitting field has deg g(x) distinct zeros.

Definition 5.4.7. Let K/F be an algbraic extension. Say α ∈ K is separable/inseparable if
mα(x) is separable/inseparable.

Say K/F is a separable extension if every element α ∈ K is separable over F . Otherwise we
say this extension is inseparable.

Some easy properties: Given a tower of extension K/E/F and α ∈ K. Clearly α is separable
over F =⇒ α is separable over E. (since mα,E(x) | mα,F (x))

Theorem 5.4.8

Let K/E/F be field extensions, α ∈ K.

(1) If α is separable over F , then F (α) is a separable extension over F .

(2) If K/E and K/F are both separable, then K/F is separable.

The idea of the proof is that, if K/F is finite and M/F is any normal extension that contains K.
Consider all possible homomorphisms φ : K →M fixing F , denote this set by HomF (K,M).
E.g. F = Q, K = Q( 3

√
2), M = Q( 3

√
2, ζ3). Then φ : K → M has only 3 choices, φ0 = id,

φ1 : 3
√
2 7→ 3

√
2ζ3, φ2 : 3

√
2 7→ 3

√
2ζ23 . Note that #HomF (K,M) = [K : F ] in this example.

Lemma 5.4.9

Let K = F (α) with mα,F (x) = g(xp
e

), where g ∈ F [x] is an irreducible and separable
polynomial.

Then #HomF (K,M) = deg g(x) ≤ [F (α) : F ]. The equality holds iff α is separable.

Proof. Since φ : K →M is determined by φ(α), and mα(α) = 0 =⇒ mα(φ(α)) = 0. Recall that
mα has deg g(x) distinct roots, we have #HomF (K,M) = deg g(x).

Since [K : F ] = degmα,F = pe deg g(x), the latter inequality holds with equailty at e = 0, i.e.
mα is separable.

This lemma provides a different perspective of separablilty.
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Corollary 5.4.10

Let K/F be a finite extension, M/F a normal extension containing K, then

#HomF (K,M) ≤ [K : F ]

Moreover the following are equivalent:

(1) K = F (α1, . . . , αn) with each αi separable over F .

(2) The equality holds.

(3) K/F is separable.

Proof. By our lemma, #HomF (F (α1),M) ≤ [F (α1) : F ]. For each embedding F (α1) ↪→ M , we
have

#HomF (α1)(F (α1, α2),M) ≤ [F (α1, α2) : F (α1)].

By induction we get the desired inequality.
The same induction on equality condition gives (1) =⇒ (2).
For (2) =⇒ (3), if there exists α ∈ K inseparable, then #HomF (F (α),M) < [F (α), F ]. For

each embedding F (α) ↪→M , we have

#HomF (α)(K,M) ≤ [K : F (α)]

Therefore #HomF (K,M) < [K : F ], contradiction!
Since (3) =⇒ (1) is trivial, we’re done.

Thus the first half of Theorem 5.4.8 is proved.

Proof of (2) of Theorem 5.4.8. Take α ∈ K with mα,E = xn + an−1x
n−1 + · · ·+ a0, ai ∈ E.

Consider K ′ = F (an−1, . . . , a0, α), E
′ = F (an−1, . . . , a0). They are all finite, so if we take M

a normal extension over F containing K ′, for each embedding E′ ↪→M ,

#HomE′(K ′,M) = [K ′ : E′] =⇒ #HomF (K
′,M) = [K ′ : F ]

Thus K ′ is separable over F , α is separable over F .

Theorem 5.4.11 (Primitive element theorem)

A finite separable extension is generated by one element.
Another stronger version is that if K = F (α, β) with α, β algebraic over F and β separable

over F . Then K = F (γ) for some γ ∈ K.

Example 5.4.12

Typical non-example when α, β both inseparable:

Let K = Fp(x
1
p , y

1
p ), F = Fp(x, y). For all α ∈ K, αp ∈ F , thus [F (α) : F ] ≤ p but

[K : F ] = p2.
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Proof. The idea is that most θ = α+ cβ should work. We need to avoid the bad c.
Now assume #F =∞. Let f(x), g(x) be the minimal polynomials of α, β over F . Let E be the

splitting field of f(x)g(x), α = α1, . . . , αr, β = β1, . . . , βs be the distinct zeros of f(x) and g(x).
Take c ∈ F so that αi + cβ1 ̸= αk + cβj , for all i, k as long as j ̸= 1. (This rules out finitely

many c, so we can always take one)
Set θ = α1 + cβ1, want to solve α, β in F (θ). Consider f(θ− cx) and g(x). They have common

zero if θ − cβj = αi ⇐⇒ α1 + cβ1 = αi + cβj . But this can only happen when βj = β1, i.e.
x = β1.

Therefore in E[x], (f(θ− cx), g(x)) = (x−β1). Here we used the fact that g(x) has only simple
roots. This implies (f(θ − cx), g(x)) = (x − β1) in F (θ)[x] as well (since computing gcd is an
algebraic process).

Hence α, β ∈ F (θ).

When the field is finite, we prove a stronger result.

Theorem 5.4.13

If F is a finite field, charF = p > 0 for a prime p and #F = pn for n = [F : Fp].
Moreover for each pn there is a unique field F of pn elements. It is the splitting field of

xp
n − x ∈ Fp[x].

Proof. Clearly #F = pn since it’s a vector space over Fp.
If F is a finite field of pn elements, F× is a finite group of order pn − 1. Hence ∀a ∈ F×,

ap
n−1 = 1, this implies ap

n − a = 0, ∀a ∈ F .
But #F = pn = deg(xp

n − x), so F is indeed the splitting field.
Conversely if F is the splitting field of xp

n − x over Fp. Note that D(xp
n − x) = −1 in F , so

it is separable, i.e. has only simple roots in F , there are exactly pn of them.
We claim that these roots elements form a subfield of F . (Hence equals to F )
∀α, β, clearly α± β, αβ, αβ are all zeros of xp

n − x since αp
n

= α and βp
n

= β.

§6 Galois theory

§6.1 Galois groups

Recall: Given a finite field extension K/F and L a normal extension of F containing K. Then
#HomF (K,L) ≤ [K : F ], and the equality holds if and only if K/F is separable.

Definition 6.1.1 (Galois extensions). We say that an algebraic extension K/F is Galois if it is
separable and normal. Define

Gal(K/F ) := AutF (K) := {ϕ : K
∼−→ K,ϕ|F = idF }.

called the Galois group of K over F .

Consider the above case with L = K. We get that #HomF (K,K) = #Gal(K/F ) = [K : F ].
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Example 6.1.2

Let K = Q(
√
2,
√
3) be a biquadratic extension of F = Q. Then Gal(K/F ) = {1, σ, τ, στ},

where
σ :
√
2→ −

√
2,
√
3→

√
3,
√
6→ −

√
6

τ :
√
2→

√
2,
√
3→ −

√
3,
√
6→ −

√
6

στ :
√
2→ −

√
2,
√
3→ −

√
3,
√
6→

√
6

If we look at the elements which are fixed by σ or τ , we’ll get

Kσ=1 = Q(
√
3), Kτ=1 = Q(

√
2), Kστ=1 = Q(

√
6).

Hence they gives the intermediate fields of the extension.

K = Q(
√
2,
√
3) = K1

Kσ=1 Kτ=1 Kστ=1

F = K{1,σ,τ,στ} = Q

Remark 6.1.3 — If a group H acts on a field K by automorphisms, then KH = {x ∈ K |
h(x) = x, ∀h ∈ H} is a subfield.

§6.2 Galois theorem and some examples

Theorem 6.2.1 (Galois Theory)

Let K/F be a finite Galois extension with Galois group G = Gal(K/F ).

(1) There’s a one-to-one correspondence between

{intermediate fields K/E/F} {subgroups H ≤ G}

KH H

E Gal(K/E)

(2) The correspondence is inclusion-reversive: H1 ≤ H2 =⇒ KH1 ⊇ KH2 .

(3) #H = [K : KH ], [G : H] = [KH : F ].

(4) If E ↔ H is a corresponding pair, then ∀g ∈ G, g(E)↔ gHg−1.

(5) H ≤ G is a normal subgroup iff KH is a normal (and separable) extension of F . In
this case Gal(KH/F ) ≃ G/H.

Proof of (2), (3), (4). (2): Clearly H1 ≤ H2 =⇒ KH2 ⊂ KH1 , and E1 ⊂ E2 =⇒ Gal(K/E1) ⊇
Gal(K/E2).
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(3): Since K separable and normal over F , K/KH is separable and normal. Thus #H =
#Gal(K/KH) = [K : KH ], #G#Gal(K/F ) = [K : F ], which implies [G : H] = [KH : F ].

(4):

x ∈ KgHg−1

⇐⇒ gHg−1x = x ⇐⇒ Hg−1x = g−1x ⇐⇒ g−1x ∈ KH = E ⇐⇒ x ∈ g(E).

Example 6.2.2

Consider Q( 3
√
2, ζ3), the splitting field of x3 − 2.

Q( 3
√
2, ζ3)

Q( 3
√
2) Q( 3

√
2ζ3) Q( 3

√
2ζ23 )

Q(ζ3)

Q

{1}

⟨(23)⟩ ⟨(13)⟩ ⟨(12)⟩

⟨(123)⟩

S3

Note that ⟨(123)⟩◁ S3 and Q(ζ3) is a normal extension of Q.
The elements of S3 is the permutation of 3

√
2, 3
√
2ζ3, and

3
√
2ζ23 .

Proof of (5). If KH is a normal extension of F , for all automorphism σ : K → K s.t. σ|F = id, σ
stabilizes KH . Hence σ(KH) = KH =⇒ σHσ−1 = H =⇒ H ◁G.

Conversely, if f(x) is an irreducible polynomial in F [x] that has a zero α in KH . We want to
show that f(x) splits in KH .

Lemma 6.2.3 (Useful lemma)

If K/F is finite Galois, and f(x) ∈ F [x] is an irreducible polynomial that splits in K. Assume
that α is a root of f(x), then all other zeros of f(x) are exactly {σ(α) : σ ∈ Gal(K/F )}.

Proof. First, each σ(α) is a root of σ(f) = f .
Now we show f(x) has no other zeros. Let g(x) =

∏
σ∈Gal(K/F )(x−σ(α)) ∈ F [x]. (Because all

coefficients are invariant under Gal(K/F ))
In K[x], (f, g) ̸= (1), this implies (f, g) ̸= (1) in F [x] as well. But f(x) is irreducible in F [x],

thus f(x) | g(x), i.e. all zeros of f are contained in {σ(α)}.

By lemma the roots of α are σ(α)’s, which all lies in K. Since α ∈ KH , σ(α) ∈ KσHσ−1

= KH ,
by the normality of KH , which shows that f(x) splits in KH [x].

As for the quotient group G/H, note that σ(KH) = KH for all σ ∈ Gal(K/F ),

K

KH

F

H

G

η : Gal(K/F ) Gal(KH/F )

(σ : K
∼−→ K) σ|KH

This is a homomorphism of group, and ker η = {σ|KH = id} = H.
Therefore η induces the injective homomorphism G/H ↪→ Gal(KH/F ). For the surjectivity,

we can simply count the number of elements or by “extensions of automorphism”.
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Theorem 6.2.4 (Galois Theory, continued)

Let K/F be a finite Galois extension with Galois group G = Gal(K/F ).

(6) If E1, E2 ↔ H1, H2, then E1E2 ↔ H1 ∩H2, E1 ∩ E2 ↔ ⟨H1, H2⟩.

Proof. By definition and the correspondence it’s easy to check.

Remark 6.2.5 (What about non-Galois (separable) extension?) — Slogan: Take a normal
closure L/F of K/F . Properties of K/F corresponds to properties of the coset G/H. (G =
Gal(L/F ), H = Gal(L/K))

Example 6.2.6

Let θ = 4
√
2, consider the normal closure of Q( 4

√
2), i.e. Q(i, 4

√
2) =: K.

Let s : i 7→ −i, 4
√
2→ 4

√
2, r : 4

√
2→ i 4

√
2, i→ i.

We can check that rsrs = id, hence Gal(K/Q) = D8.
We can find all the intermediate fields using the subgroups of D8, note that some inter-

mediate fields are hard to find directly, like Q((1− i) 4
√
2).

Q( 4
√
2, i)

Q( 4
√
2) Q(i 4

√
2) Q(

√
2, i) Q((1− i) 4

√
2) Q((1 + i) 4

√
2)

Q(
√
2) Q(i) Q(

√
−2)

Q
{1}

⟨s⟩
〈
sr2

〉 〈
r2
〉

⟨sr⟩
〈
sr3

〉
〈
s, r2

〉
⟨r⟩

〈
r2, sr

〉
D8

§6.2.1 Cyclotomic fields

For finite fields, let q = pr, Fq be the field with q elements. Clearly Fqn is a normal (separable)
extension of Fq. (splitting field of xq

n − x.)
Let ϕq : Fqn → Fqn takes a to aq. We say the q-Frobenius element is the fixed points of ϕq.
Note that

Fϕq=1
qn = {x | xq − x = 0} = Fqm .
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Definition 6.2.7 (Abelian extensions). We say a finite extension K/F is abelian if K/F is Galois
and Gal(K/F ) is abelian.

Let µn := ⟨ζn⟩ ≃ Z/nZ be the group of n-th roots of unity.
A primitive n-th root of unity is a generator of µn, i.e. ζ

a
n for some a ∈ (Z/nZ)×.

Define Φn(x) =
∏
a∈(Z/nZ)×(x− ζan), the n-th cyclotomic polynomial

xn − 1 =
∏

a∈Z/nZ

(x− ζan) =
∏
d|n

Φd(x)

thus by induction Φn(x) ∈ Z[x].

Theorem 6.2.8

Φn(x) is irreducible in Z[x] and in Q[x].

Proof. We only need to show Φn(x) is irreducible in Z[x]. Let ζ be a primitive n-th root of unity
in the splitting field of Φn(x).

Clearly mζ,Q | Φn(x). Let f(x) := mζ,Q(x).

Claim 6.2.9. If p is a prime, p ∤ n, then ζp is a zero of f(x).

Using this claim we know that every ζa is a zero of f(x), ∀a ∈ (Z/nZ)×, since a =
∏
i p
αi
i ,

where pi ∤ n. Therefore the claim would imply the theorem.
Proof of the claim:
Suppose not, let g(x) := mζp,Q(x), then f(x) ̸= g(x) and (f, g) = (1), so fg | Φn(x).
But g(ζp) = 0 =⇒ g(xp) has ζ as a zero, f(x) | g(xp). Write g(xp) = f(x)h(x) for some

h(x) ∈ Z[x].
Consider this equality modulo p. Since g(xp) = (g(x))p in Fp,

(g(x))
p
= f(x)h(x).

Thus f and g have a common factor, which means Φn has repeated zeros in its splitting field, and
so does xn − 1, contradiction!

Corollary 6.2.10

[Q(ζn) : Q] = degΦn(x) = φ(n).

In fact Gal(Q(ζn)/Q) ≃ (Z/nZ)×, by a 7→ (φa : ζn 7→ ζan).

Corollary 6.2.11

For every finite abelian group G, there exists a finite Galois extension K of Q with Galois
group G.

Proof. Write G = Z/n1 × . . .Z/nr.
The idea is to find (Z/pi)× ↠ Z/ni, (this can be done by choosing pi ≡ 1(modni)) then we

can find an intermediate field K of Q(ζp1···pr )/Q, which corresponds to the kernel of the map
Z/p1 · · · pr ↠ G.

Therefore we have Gal(K/Q) = G.
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Example 6.2.12

Find a cyclic extension of Q of degree 3. Since 7 ≡ 1(mod3), consider Q(ζ7).
Note that the kernel of (Z/7)× ↠ Z/3 is the subgroup H = {±1}, so K = Q(ζ7)

H is an
extension of degree 3, namely Q(ζ7 + ζ−1

7 ).

Q(ζ7)

K = Q(ζ7)
H

Q

Z/7Z

2

3

There is a large theorem related to the abelian extensions, which is the motivation of class field
theory:

Theorem 6.2.13 (Kronecker-Weber)

Every finite abelian extension of Q is contained in some Q(ζn).

§6.2.2 Proof of Galois Theory

Now we’re goning to prove (1) of Theorem 6.2.1, the main result of Galois theory.

Lemma 6.2.14

For K/F finite Galois, we have #Gal(K/F ) = [K : F ].

We’ll use this result in the proof.
Since K/F finite normal, K is the splitting field of a separable polynomial f(x) ∈ F [x], thus

K/E is also Galois.
Now by Gal(K/E) = [K : E], we only need to show that H ≤ G implies Gal(K/KH) = H.
Since ∀h ∈ H, h fixes KH , H ≤ Gal(K/KH). It suffices to show

#H ≥ #Gal(K/KH) = [K : KH ].

(Indeed, if this holds then H = Gal(K/KH), conversely given K/E/F , [K : E] = #Gal(K/E) =
[K : KGal(E)] and E ⊂ KGal(K/E), so E = KGal(K/E).)

There are two proofs of this equation.

Proof 1. By primitive element theorem, K = KH(α) for some α ∈ K (K/KH is finite separable).
Consider the polynomial

f(x) =
∏
h∈H

(x− h(α)).

Since every element of f(x) is fixed by H, so f ∈ KH [x]. Clearly f(α) = 0, mα,KH | f , so
[K : KH ] ≤ #H.

Proof 2. This proof uses Artin’s lemma.
Let H = {σ1, . . . , σn}. Let u1, . . . , un+1 ∈ K, we want to show they are KH -linealy dependent.
Consider (σi(uj))ij , which is a n× (n+1) matrix in K. The columns v1, . . . , vn+1 of the matrix

are K-linealy dependent.
So there exists r s.t. v1, . . . , vr are K-linearly independent, and v1, . . . , vr+1 are K-linearly

dependent. Say vr+1 = α1v1 + · · ·+ αrvr.
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Claim. α1, . . . , αr ∈ KH .

Proof of the claim. ∀σ ∈ H,

σ(vr+1) = σ(α1)σ(v1) + · · ·+ σ(αr)σ(vr).

But note that σ(vi) =

σσ1(vi)...
σσn(vi)

 is a permutation of vi.

Thus we have
vr+1 = σ(α1)v1 + · · ·+ σ(αr)vr.

Which implies that αj = σ(αj), so αj ∈ KH .

Therefore K as a KH -vector space is at most n dimensional, which means [K : KH ] ≤ #H.

§6.2.3 Galois theory for composite field

Proposition 6.2.15

Assume K/F is Galois, E/F is any field extension, then KE is a Galois extension of E, and

Gal(KE/E) ∼= Gal(K/K ∩ E).

KE

K E

K ∩ E

F

Corollary 6.2.16

If K/F finite Galois and E/F finite, then

[KE : K ∩ E] = [K : K ∩ E][E : K ∩ E].

Remark 6.2.17 — Caveat: K/F Galois is essential to this proposition, since Q( 3
√
2, ζ3) =

Q( 3
√
2)Q( 3

√
2ζ3) is an extension of Q with degree 6, not 3× 3 = 9.

Proof of Proposition 6.2.15. SinceK/F finite Galois, K is a splitting field over F of some separable
polynomial, so KE is a splitting field over E of the same polynomial, i,e, KE/E is Galois and
finite.

Consider Ψ : Gal(KE/E)→ Gal(K/K ∩ E) by σ 7→ σ|K . (Since K/K ∩ E is normal, so K is
stable under σ-action)

If σ|K = id and σ|E = id, then σ = id, so kerΨ = {idKE}.
For surjective part, let H = ImΨ ⊂ Gal(K/K ∩ E). Consider K ∩ E ⊂ KH ⊂ K.
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Claim. KH ⊂ E, hence KH = K ∩ E.

Note that ∀σ ∈ Gal(KE/E), σ|E = id, and by definition σ|KH = id =⇒ σ|KHE = id.
By Galois theory, EKH is fixed by entire Gal(KE/E), thus EKH = E =⇒ KH ⊂ E.

Proposition 6.2.18

Assume K1/F,K2/F are both finite Galois. Then K1K2, K1 ∩K2 are both Galois over F ,
and

Gal(K1K2/F ) ∼= {(g1, g2) ∈ Gal(K1/F )×Gal(K2/F ) | g1|K1∩K2
= g2|K1∩K2

}

In particular, if K1 ∩K2 = F , Gal(K1K2/F ) ∼= Gal(K1/F )×Gal(K2/F ).

The proof is nearly the same as above, i.e. construct a map, check it’s injective and calculate the
number of elements of both sides.

§6.3 Galois groups of polynomials

We need some preparations before we discuss polynomials.

Definition 6.3.1 (Character). Let H be an abelian group and L be a field. A character χ of H
with values in L is a group homomorphism χ : H → L×. (In fact this is a 1d representation of H,
but this is not helpful)

The main application of characters is when H = L×, and χ = σi : L
∼−→ L.

Theorem 6.3.2 (Artin’s linear independence of character)

If χ1, . . . , χn are distinct characters of an abelian group H with values in L. Then they are
L-linearly independent as functions on H.

Proof. Suppose that they are linearly dependent. Then among all linear relations, there exists one
with minimum number of nonzero coefficients, WLOG

a1χ1 + a2χ2 + · · ·+ arχr = 0.

Since χ1 ̸= χr, ∃h0 s.t. χ1(h0) ̸= χr(h0).

a1χ1(hh0) + · · ·+ arχr(hh0) = a1χ1(h0)χ1(h) + · · ·+ arχr(h0)χr(h) = 0

Now by looking at the differece we get

a1(χ1(h0)− χr(h0))χ1(h) + · · ·+ ar−1(χr−1(h0)− χr(h0))χr−1(h) = 0.

Which is a relation with fewer nonzero coefficients, contradiction!

§6.3.1 Cyclic extensions

Definition 6.3.3 (Cyclic extensions). An extension K/F is called a cyclic extension if K/F is
Galois and Gal(K/F ) is cyclic.
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Proposition 6.3.4

Assume F is a field with

• charF ∤ n.

• F contains all n-th root of unity.

Then K = F ( n
√
a) for any a ∈ F is a cyclic extension of degree dividing n.

Proof. Since

xn − a =

n∏
i=1

(x− ζin n
√
a)

splits completely in K, thus K/F is normal and separable.
Let

λ : Gal(K/F ) ↪→ {1, . . . , ζn−1
n } = µn, σ 7→ σ( n

√
a)

n
√
a

= ζ?n

Clearly λ is a homomorphism, so Gal(K/F ) is a subgroup of µn ∼= Z/nZ, which must be
cyclic.

Theorem 6.3.5 (Kummer)

If F is a field, such that charF ∤ n, and F contains all n-th roots of unity. Then any cyclic
field extension K/F of degree n is of the form K = F ( n

√
a) for some a ∈ F×.

Proof. Let Gal(K/F ) ≃ Z/nZ = ⟨σ⟩.
For α ∈ K, let

b := α+ ζnσ(α) + · · ·+ ζn−1
n σn−1(α).

be the Lagrange resolvent.
By linear independence of characters, 1, σ, . . . , σn−1 are characters K× → K×, so they’re

independent, i.e. exists α s.t. b ̸= 0.
Take a = bn, note that σ(b) = ζ−1

n b, thus σ(a) = a =⇒ a ∈ F , and b is not contained in any
intermediate fields in K/F , which means K = F (b) = F ( n

√
a).

Remark 6.3.6 — We can solve any element in K by taking radicals.

§6.3.2 Insolvability of equations of degree 5

Definition 6.3.7. An element α ∈ K algebraic over F can be expressed by radicals or solved
in terms of radicals, if α belongs to a successive simple extensions

F = K0 ⊂ K1 ⊂ · · · ⊂ Ks = K (∗)

where Ki+1 = Ki( ni
√
ai).
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Proposition 6.3.8

If an element α ∈ K can be expressed by radicals, then α is contained in a Galois extension
L of F satisfying (*).

Proof. Let L be a Galois closure ofK/F . Suppose Gal(L/F ) = {1, σ1, . . . , σr}, L = Ksσ1(Ks) · · ·σr(Ks)
satisfies (*).

Definition 6.3.9. For an irreducible polynomial f(x) ∈ F [x], its Galois group is the Galois
group of its splitting field over F .

Theorem 6.3.10

An irreducible polynomial f(x) ∈ F [x] can be solved by radicals if and only if its Galois group
is a solvable group.

Proof. If f(x) can be solved by radicals, then ∃L/F Galois satisfies (*).
Let F ′ = F (ζn1

, . . . , ζns
), by Kummer’s theory, each Ki+iF

′ is a cyclic extension KiF
′, so

Gi+1 ◁Gi and Gi/Gi+1 cyclic. Here Gi = Gal(L/KiF
′) and G = Gal(L/F ).

Also G0 ◁G and G/G0 abelian, which means G is solvable.
On the other hand, let K be the splitting field of f(x) over F , Gal(K/F ) solvable. Let

{1} = Hs ◁Hs−1 ◁H0 = G

such that Hi/Hi+1 is cyclic.
Let Ki = KHi , F ′ = F (ζ#G) is a radical extension.
Now sinceK ′

i+1/K
′
i is Galois, and Gal(K ′

i+1/K
′
i) ↪→ Gal(Ki+1/Ki) is cyclic, by Kummer theory,

K ′
i+1 = K ′

i(
ni
√
ai) is a radical extension for each i, hence f(x) can be solved by radicals.

Corollary 6.3.11

If an equation has Galois group isomorphic to An or Sn with n ≥ 5, it is not solvable by
radicals.

§6.4 Inverse limits

Definition 6.4.1 (Inverse limits (easy version)). Consider a sequence of surjective maps of finite
sets

A1 ↞ A2 ↞ A3 . . .

Define

lim←−
n

An :=

{
(a1, a2, . . . ) ∈

∏
n

An | fn(an+1) = an

}
.

This is called the inverse limit / projective limit of the Ai’s.
When each An has a structure of a group / ring / field, and each fi is a homomorphism, the

inverse limit is a group / ring / field.
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Example 6.4.2

Let p be a prime,
Z/pZ↞ Z/p2Z . . .

where each map is modulo pn, the inverse limit

lim←−
n

Z/pnZ =: Zp

the ring of p-adic numbers.
For example, Z can be embedded into Zp by a 7→ (a mod p, a mod p2, . . . ). When p = 7,

the number a = 2 is invertible in Z7, since we can solve 2xn ≡ 1(modpn) for each n.
In fact we have Z×

p = {(x0, x1, . . . ) | x0 ̸= 0}.
An alternative way to write x ∈ Zp is the infinite sum

x = a0 + a1p+ a2p
2 + · · · = (a0, a0 + a1p, a0 + a1p+ a2p

2, . . . )

so x is indeed looks like an integer with base p.

More generally, if R = lim←−nRn, then R
× = lim←−nR

×
n .

Proof. Let fn : Rn+1 → Rn, then fn(R
×
n+1) ⊂ R×

n .
Given a ∈ R×, b = a−1 ∈ R. Then for all n, anbn = 1 ∈ Rn =⇒ an ∈ R×

n , so a ∈ lim←−nR
×
n .

Conversely, given a = (an) ∈ lim←−nR
×
n , put bn := a−1

n ∈ Rn, we need to check fn(bn+1) = bn.

1 = fn(an+1bn+1) = anfn(bn+1),

by uniqueness of inverses, we know that fn(bn+1) = bn.

Example 6.4.3

The formal power series
C[[x]] = lim←−

n

C[x]/(xn)

can be viewed as “Taylor expansion of a function at x = 0”, that’s why it’s called a limit.

More generally, we can define the inverse limit as

Definition 6.4.4. Let I be a poset (partially ordered set), we say that I is filtered if ∀i, j ∈ I,
∃k ∈ I s.t. k > i and k > j. (We always assume that I is filtered below)

Suppose that for each i ∈ I, we are given a set/group/ring Ai, and if j > i, we have a
homomorphism φji : Aj → Ai such that if k > j > i, the maps are compatible:

Ak Aj

Ai

φkj

φki
φji

We call this an inverse system.
Define the inverse limit

lim←−
i∈I

Ai = {(ai)i∈I | φji(aj) = ai} ⊂
∏
i∈I

Ai.
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If B is a set/group/ring with homomorphisms λi : B → Ai such that ∀j > i,

B Aj

Ai

λj

λi

φji

Then there exists a homomorphism B → lim←−i∈I Ai, by sending b to (λi(b))i∈I .

Example 6.4.5

Let lim←−n Z/nZ =: Ẑ, where the inverse limit is by divisibility, i.e. if m | n, we have the modulo

map Z/nZ↠ Z/mZ.
In fact we have

Ẑ ≃
∏
p

Zp.

Let φp : Ẑ→ Zp by (an) 7→ (apr ), this clearly induces a map φ : Ẑ→
∏
p Zp.

Conversely, to construct the map we need compactible family of
∏
p Zp → Z/nZ for all n,

and this is done by Chinese Remainder Theorem.
Another example is GLN (Ẑ) =

∏
pGLN (Zp).

Next we can define the topology of inverse limits. Let the topology on Ai be the discrete
topology.

• An open subset of A is a union of basic opens.

∀i ∈ I, ai ∈ A, π−1(ai) ⊂ A is a basic open.

• The inverse limits can be embedded into product space
∏
i∈I Ai, so the topology can be

induced by the product topology.

Above two definitions induces the same topology (not proved here).

Theorem 6.4.6

If each Ai is compact Hausdorff, then lim←−i∈I Ai is also compact Hausdorff.

Proof. Since
∏
i∈I Ai is compact and Hausdorff by Tychonoff theorem, but lim←−Ai is closed (“cut

out” by conditions φji(aj) = ai), thus it’s compact and Hausdorff.

Definition 6.4.7. A topological group is a group G with a topology on the underlying subset,
such that ι : g 7→ g−1 and m : (g, h) 7→ gh are continuous maps.

Let U ⊂ G be an open set, then ∀g, h ∈ G, gUh is still open.
If H ≤ G is an open subgroup, then H is also closed.

Proof. Let G = ⊔giH be the cosets, since each coset is open, their union G \H is open, thus H is
closed.

If G is a compact group, an open subgroup H is of finite index. (Since the open cover by cosets
is disjoint union, the only subcover is itself)
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Example 6.4.8

The p-adic numbers has open subgroup pZp = π−1
1 (0).

Zp = pZp ⊔ (1 + pZp) ⊔ · · · ⊔ (p− 1 + pZp)

where each component is disconnected with the others, and can be divided into smaller com-
ponents. Hence Zp is a “totally disconnected” space.

If G is a compact group, a closed subgroup of finite index is open. (Again this follows by
considering the cosets)

Definition 6.4.9. A profinite group is a filtered inverse limit of finite groups, with inverse
topology.

Lemma 6.4.10

If G is a profinite group,
G ≃ lim←−

H◁G open

G/H

Note that such H forms an inverse system, H1, H2 ◁G implies H1 ∩H2 ◁G.

Proof. Obviously G→ lim←−G/H is the projection on each component.
Conversely, write G = lim←−i∈I Gi with Gi finite, consider πi : G→ Gi, kerπi ◁G is open (since

it’s finite). The map
lim←−

H◁G open

G/H → G/ kerπi → Gi

is compactible as i varies. Hence this induces the desired map.
(Here we didn’t check they are inverse maps for simplicity)

§6.5 Infinite Galois theory

Recall that if K/F is a Galois extension, then

K =
⋃

E/F finite Galois

E.

Now we define
Gal(K/F ) := lim←−

E/F finite Galois

Gal(E/F ).

The connecting homomorphism is the natural projection (i.e. the quotient map)

Gal(E1/F )↠ Gal(E2/F ), E2 ⊂ E1.
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Example 6.5.1

Let Q(µp∞) := Q(ζpr , r ∈ N). Then

Gal(Q(µp∞)/Q) = lim←−
n

Gal(Q(ζpn)/Q) = Z×
p .

Let Q(µ∞) := Q(µn, n ∈ N),

Gal(Q(µ∞)/Q) = lim←−
n

Gal(Q(ζ)n)/Q) = Ẑ× ≃
∏
p

Z×
p .

Lemma 6.5.2

The Galois group is
Gal(K/F ) = {σ : K

∼−→ K | σ|F = idF }.

Proof. Note that for each σ, it induces a compatible family σE for each E/F finite Galois.
By definition this is precisely lim←−Gal(E/F ).
(There’s a topology issue, i.e. Gal(K/F ) acts on K continuously, which is not checked in this

course)

Theorem 6.5.3 (Galois theory for infinite extensions)

Let K/F be a Galois extension. Then there’s a 1-to-1 correspondece

{closed subgroups H ≤ Gal(K/F )} {intermediate fields E of K/F}

open E/F finite

normal E/F Galois

When H is normal, Gal(E/F ) ≃ Gal(K/F )/Gal(K/E).

Remark 6.5.4 — This way we have

G = Gal(K/F ) = lim←−
E/F fin Galois

Gal(E/F ) = lim←−
H◁G open

G/H

where H can be think of Gal(K/E).
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Lemma 6.5.5

Let G be a profinite group, H ≤ G a closed subgroup. For each open N ◁ G, put HN :=
Im(H → G/N). Then

H ∼= lim←−
N◁G open

HN = G ∩
⋂

N◁G open

π−1
N (HN ).

Note that there’s a natural HN ′ → HN if N ′ < N , so HN forms an inverse system.

Proof. TODO: diagram
We have

H ⊂ lim←−
N◁G open

HN ⊂ G.

Suppose this inclusion is strict,
Hc ∩ lim←−HN ̸= ∅.

Since Hc is open, there exists a basic open gN ′ ⊂ G, N ′ ◁G open such that

gN ′ ∩H = ∅, gN ′ ∩ lim←−HN ̸= ∅.

This means that
gN ′ /∈ Im(H → G/N ′) = HN ′ , gn′ ∈ HN ′ ,

contradiction!

Proof of Galois theory, part 1. First we check Gal(K/KH) = H for each closed subgroup H.

Gal(K/KH) = {σ : K
∼−→ K | σ|KH = id}

= lim←−
E/F fin Gal

Gal(E/E ∩KH)

= lim←−
E/F fin Gal

Gal(E/EψE(H))

= lim←−
E/F fin Gal

ψE(H) = H.

where ψE : G→ Gal(E/F ) by g 7→ g|E .
Let N = kerψE , then ψE(H) = HN , the last equality follows from the lemma.

Recall that Gal(K/F ) := lim←−E/F fin Gal
Gal(E/F ). We want to compute Gal(K/L) for an

intermediate field L.

Gal(K/L) = lim←−
L′/L fin Gal

Gal(L′/L)

= lim←−
E/F fin Gal

Gal(LE/L),

since ∀L′/L finite Galois, there exists E/F finite Galois, such that L′ ⊂ EL.
Note that

Gal(LE/L) = Gal(E/E ∩ L) ≤ Gal(E/F ).

hence Gal(K/L) ≤ Gal(K/F ) as desired.
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Proof of Galois theory, part 2. We’ll check L = KGal(K/L) in this part.
It suffices to check, for finite Galois extension E/F , L ∩ E = KGal(K/L) ∩ E.
In fact,

KGal(K/L) ∩ E = EIm(Gal(K/L)→Gal(E/F )) = EGal(E/E∩L) = E ∩ L,

where the last equality follows from finite Galois theory.

§6.6 Algebraic closures

Definition 6.6.1. A field extension K/F is called an algebraic closure (resp. separable clo-
sure) if

• K/F is an algebraic (resp. separable) extension.

• Every polynomial (resp. separable polynomial) f(x) ∈ F [x] splits completely over K.

Denote them by F alg and F sep respectively.

Remark 6.6.2 — F alg contains all splitting fields of F .

Definition 6.6.3. A field K is called algebraically closed if all polynomials in K[x] splits
completely. (i.e. all irreducible polynomials in K[x] has degree ≤ 1 ⇐⇒ K has no nontrivial
algebraic closures)

A field K is called separably closed if all nontrivial algebraic extensions of K are inseparable.

Proposition 6.6.4

Let K be a field.

(1) An algebraic (separable) closure of an algebraically (separably) closed field K is just
K.

(2) If K is an alg (separable) closure of F , then K is algebraically (separably) closed.

Proof. For (2), suppose α is algebraic over K, consider

mα,K(x) = xn + an−1x
n−1 + · · ·+ a0, ai ∈ K.

Since F (a0, . . . , an−1, α) is a finite extension over F , hence algebraic, which implies α ∈ K.

Theorem 6.6.5 (1) Any field F is contained in an algebraically closed field.

(2) If F ⊂ K with K algebraically closed,

F alg := {x ∈ K : x algebraic over F}

F sep := {x ∈ K : x algebraic and separable over F}

(3) Algebraic closure is unique up to isomorphisms, but not a canonical isomorphism.
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Proof. We skip the proof of (1) since it’s too difficult.
(2): Every f(x) ∈ F [x] splits completely in K[x], and zeros of f is in F alg, thus f splits in

F alg[x] i.e. F alg is an algebraic closure of F .
(3): Let F alg, F alg

′
be two algebraic closures of F . By the fact

F alg =
⋃

E/F finte normal

E,

we can extend
η : F alg → F alg

′
,

but η(F alg) is algebraically closed, F alg
′
/η(F alg) is algebraic, η must be an isomorphism.

The main object in number theory is to study Q, the algebraic closure of Q. We can do this
by looking at

Gal(Q/Q)↠ Gal(K/Q)

like when K = Q(µ∞).

§6.7 Transcendence extension

Definition 6.7.1. Let K/F be a field. A subset {α1, . . . , αn} ⊂ K is algebraiccally indepen-
dent over F , if there is no nonzero polynomial f(x1, . . . , xn) ∈ F [x1, . . . , xn] s.t.

f(α1, . . . , αn) = 0.

This gives rise to an injection

η : F (x1, . . . , xn)→ K,
p(x)

q(x)
7→ f(α)

g(α)
.

An infinite subset A ⊂ K is algebraically independent if and only if any finite subset is alge-
braically independent.

Definition 6.7.2. A transcendence base is a maximal algebraically independent subset of K
over F . This is equivalent to K/F (α1, . . . , αn) is algebraic.

Theorem 6.7.3

The extension K/F has a transcendence base, and any two transcendence bases for K/F have
the same cardinality.

Proof. The proof is essentially same as bases in vector spaces.
Existence follows from Zorn’s lemma.
Cardinality (finite version) can be proved by

#{an alg indep set} ≤ #{a “transcendent generating set”}

This is identical with the proof in vector spaces. Let {αi} be an algebraically independent set,
{βj} be a transcendent generating set (TGS). (Idea: swap the αi’s into {β1, . . . , βn} one by one)

WLOG α1 /∈ {βj}, we need to find βj /∈ {αi}, such that {α1, β1, . . . , β̂j , . . . , βn} is a TGS.
Since ∃f s.t. f(α1, βi, . . . , βn) = 0. Then ∃j ∈ {1, . . . ,m} s.t. βj appears in f and βj /∈ {αi}.
Now F (α1, β1, . . . , βn)/F (α1, . . . , β̂j) is an algebraic extension, K/F (α1, . . . , β̂j) is also alge-

braic, giving the desired result.
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Definition 6.7.4. The cardinality of transcendence base is called transcendence degree of
K/F .

Example 6.7.5

Q(π) ≃ Q(x) has transcendence degree 1.

Remark 6.7.6 — If {α1, . . . , αn} and {α′
1, . . . , α

′
n} are transcendence bases, in general,

F (α1, . . . , αn) ̸= F (α′
1, . . . , α

′
n).

E.g. {x2} is also a base of Q(x)/Q.

Definition 6.7.7. An extension K/F is called purely transcendent if K ≃ F (α1, . . . , αn).

Example 6.7.8 (How to describe transcendent extensions?)

For example F (x)(
√
x3 − x).

This leads to the basics of algebraic geometry. The basic idea is

U ⊂ Cn open O(U) = {holomorphic functions on U}

x ∈ U mx = {f ∈ O(U), f(x) = 0}.

Here mx = ker(O(U)
evx

↠ C). Since O(U)/mx ≃ C, it is a maximal ideal.
Let k is an algebraically closed field, the same thing can be done in kn and k[x1, . . . , kn]

replacing U and O(U).

Theorem 6.7.9 (Hilbert Nullstellensatz (weak form))

Every maximal ideal of k[x1, . . . , xn] is of the form (x1−a1, . . . , xn−an) for some (a1, . . . , an) ∈
kn.

It’s tempating to state that there’s a bijection between kn and maximal ideals of k[x1, . . . , xn], but
there’s some problems.

Given f ∈ k[x1, . . . , xn], let

Z(f) := {a ∈ kn | f ∈ ma} = {a ∈ kn | f(a) = 0}.

Similarly, let I = (f1, . . . , fm) ⊂ k[x1, . . . , xn] be an ideal.

Z(I) = {a ∈ kn | ∀f ∈ I, f(a) = 0} = Z(f1) ∩ · · · ∩ Z(fm).

Note that Z(fm) = Z(f), and (f) ̸= (fm). So we need to use some commutative algebra to get
rid of this problem.

§6.7.1 Some commutative algebra

Let R be a commutative ring, I is an ideal. Define its radical to be
√
I = {f ∈ R | fn ∈ I for some n ∈ N∗}.
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Check
√
I is an ideal:

f, g ∈
√
I =⇒ fm, gn ∈ I =⇒ (f + g)m+n−1 = fmA+ gnA ∈ I =⇒ f + g ∈ I.

f ∈
√
I, a ∈ R =⇒ fm ∈ I =⇒ amfm ∈ I =⇒ af ∈

√
I.

Definition 6.7.10. An ideal I is called radical if I =
√
I.

Fact: Let I ⊂ k[x1, . . . , xn] be an ideal, then Z(I) = Z(
√
I). (prove it yourself!)

Theorem 6.7.11 (Hilbert Nullstellensatz (strong form))

There is a bijection between algebraic subsets of kn (i.e. of the form Z(I)) and radical ideals
of k[x1, . . . , xn].

Z 7→ I(Z) := {f ∈ k[x1, . . . , xn] | f |Z = 0}.

§6.8 Proof of Hilbert Nullstellensatz

All rings are commutative below.
Recall that for field extensions, finite ⇐⇒ algebraic and fin gen. We’ll do similar things on

rings.

Definition 6.8.1. Let A ⊂ B be a subring, an element x ∈ B is called integral over A if it
satidfies an equation

xn + an−1x
n−1 + · · ·+ a0 = 0

for some a0, . . . , an−1 ∈ A.

Proposition 6.8.2

The following are equivalent:

(1) x is integral over A.

(2) A[x] ⊂ B is a finitely generated A-module.

(3) A[x] is contained in a subring C of B s.t. C is a fin gen A-module.

Proof. (1) =⇒ (2). Note that xn+s = −an−1x
n+s−1 − · · · − a0xs, so any element in A[x] can be

written as an A-linear combination of 1, x, . . . , xn−1, hence A[x] is generated by them.
(3) =⇒ (1). Assume C is generated by e1, . . . , en as an A-module.
Consider xej ∈ C, let xej =

∑
aijei (not uniquely, but fix one).

Let f(x) := det(xIn − (aij)). Since

(e1, . . . , en)(xIn − (aij)) = (0, . . . , 0)

multiplying by the adjugate matrix of xIn − (aij),

(e1, . . . , en)f(x) = (0, . . . , 0).

Hence eif(x) = 0, but e1, . . . , en generate C as an A-module, 1 = c1e1 + · · · + cnen =⇒ f(x) =
0.
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Corollary 6.8.3

Let x1, . . . , xn be elements of B, each integral over A. Then A[x1, . . . , xn] is a fin gen A-
module.

Corollary 6.8.4

The set C of elements of B integral over A is a subring of B. This C is called the integral
closure of A in B.

Proof. Given x, y ∈ C, A[x, y] is a fin gen A-module, and x ± y, xy ∈ A[x, y] =⇒ x ± y, xy are
integral over A.

An example is A = Z, B = Q(
√
D), then C = Z[

√
D] or Z[ 1+

√
D

2 ], according to whether
D ≡ 1(mod4) or not.

If C = A, we say A is integrally closed in B; If C = B, we say B is integral over A.

Corollary 6.8.5

If A ⊂ B ⊂ C are rings and if B is integral over A, C is integral over B, then C is integral
over A.

Proof. Identical with the proofs of algebraic field extensions.

Corollary 6.8.6

Let A ⊂ B be a subring, C is the integral closure of A in B, then C is integrally closed in B.

§6.8.1 Noether normalization

Let k be a field, and R is a finitely generated k-algebra, i.e. R = k[x1, . . . , xn]/I for some ideal I.
E.g. Q[x, x−1] = Q[x, y]/(xy − 1) is a fin gen Q-algebra, but Q(x) is not.

Theorem 6.8.7

Given a fin gen k-algebra R, there exists r ≤ n and an injective homomorphism

φ : k[y] = k[y1, . . . , yr] ↪→ R

such that R is integral over k[y].

Proof (Nagata). Induction on n. Suppose theorem proved for n− 1, Say R = k[x1, . . . , xn]/I.
If I = (0), we’re done. WLOG I ̸= (0), let f(x) ∈ I.
Take positive integers r2, . . . , rn and put

z2 = x2 − xr21 , . . . , zn = xn − xrn1 .

Then by this substitution, set f̃ = f(x1, x
r2
1 + z2, . . . ) ∈ k[x1, z2, . . . , zn], Suppose 1≪ r2 ≪ · · · ≪

rn.
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Hence we have f̃ = axN1 + (terms of degree < N), WLOG a = 1. So k[x1, z2, . . . , zn]/(f̃) is
integral over k[z2, . . . , zn], and it’s generated by 1, x1, . . . , x

N−1
1 .

This implies every element of k[x1, z2, . . . , zn]/I can be written as

h0(z) + · · ·+ hN−1(z)x
N−1
1

So k[x1, z2, . . . , zn]/I is a fin gen module over k[z]/(I ∩ k[z]). Meaning that R is integral over k[y]
by induction hypo.

§6.8.2 Weak form

Lemma 6.8.8

Let R be a field, S ⊂ R be a subring s.t. R is integral over S. Then S is a field.

Proof. Trivial.

TODO
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