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数学分析笔记 2022秋 1 Continuous functions

1 Continuous functions

1.1 Definitions

Definition 1.1 (continuous at a point). Given two metric spacesX,Y and a map f : X → Y ,

for x0 ∈ X, if ∀ε > 0,∃δ > 0, such that

∀dX(x, x0) < δ, dY (f(x), f(x0)) < ε

we say f is continuous at x0.

Proposition 1.2 (sequential definition of continuity)

The above definition is equivalent as the following definition:

Given two metric spaces X,Y and a map f : X → Y , if for every sequence {xn}
that converges to x0, {f(xn)} converges to f(x0), then f is continuous at x0.

Definition 1.3 (continuous maps). If a map f : X → Y is continuous at every point in X,

then f is a continuous map.

Denote by C([a, b]) the set of continuous functions on [a, b].

Proposition 1.4

If f, g are continuous functions, we have:

• af + bg is continuous, ∀a, b ∈ R.

• f · g is continuous.

• if g(x0) ̸= 0, f(x)
g(x)

is continuous at x0.

• g ◦ f is continuous.(by sequential definition)

Example 1.5

Consider a function f : R2 → R such that

f(x, y) =


xy

x2 + y2
, x2 + y2 ̸= 0

0, x = y = 0

Note that for every fixed x0 ∈ R, f(x0, y) is continuous, but f(x, y) is not continuous at
point (0, 0).
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Example 1.6

Consider Dirichlet’s function f : R → R such that

f(x) =

1, x ∈ Q

0, x /∈ Q

f is not continuous at any point.

g(x) =


1

p
, x =

q

p
∈ Q, (p, q) = 1

0, x /∈ Q

g is continuous at every irrational point.

1.2 Properties of continuous functions

Theorem 1.7

An increasing function f : (a, b) → R has at most countable many non-continuous points.

Proof. f is non-continuous at x0 ⇐⇒ lim
x→x−

0

f(x) < lim
x→x+

0

f(x). We map x0 to the intervalÇ
lim

x→x−
0

f(x), lim
x→x+

0

f(x)

å
. Note that these intervals are disjoint from each other.

Theorem 1.8 (Intermediate value theorem)

f is continuous on [a, b] =⇒ ∀c ∈ [f(a), f(b)] (or [f(b), f(a)]), ∃x0 ∈ [a, b] such that

f(x0) = c.

Proof. Use bisection and nested intervals.

Theorem 1.9

f is continuous on [a, b] =⇒ f achieves its maximum value on [a, b].

Sketch of the proof. There are two things to prove:

• The image of f is bounded.

• Take the supremum of the image set, prove it can be achieved by f .

both of them can be proved by sequential compactness of [a, b].
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Remark 1.10 — The above two theorem grants that any continuous function’s range

on a closed interval is a closed interval as well.

Theorem 1.11

The inverse function f−1 of a continuous and strictly incresing function f : [a, b] → R is

also continuous and strictly incresing.

Proof. Clearly f is bijection, so f−1 is bijection =⇒ f−1 is strictly inceasing.

For continuity, fix y0 = f(x0), we need to show that sup
y<y0

f−1(y) = inf
y>y0

f−1(y) =

x0. However this is trivial (assume for contradiction that sup
y<y0

f−1(y) < x0, take x1 ∈Ç
sup
y<y0

f−1(y), x0

å
).

Remark 1.12 — With this theorem we can define functions like lnx,
√
x etc.

Example 1.13 (o(x)) • ln(1 + x) = x+ o(x) because

lim
x→0

ln(1 + x)

eln(1+x) − 1
= lim

x→0

x

ex − 1
= 1.

• (1 + x)µ = 1 + µx+ o(x), µ ∈ R, µ ̸= 0, because

lim
x→0

eµ ln(1+x) − 1

µ ln(1 + x)
· ln(1 + x)

x
= 1.

2 Basic topology

Here we only focus on the topology on Eucild space Rn.

2.1 Definitions

Definition 2.1 (Topological spaces). Given a pair (X,A), where X is a set and A is a

collection of subset of X (these subsets are called the open sets). It’s a topological space

if:

• ∅, X ∈ A;

• The union of any number of open sets is still an open set.

• The intersection of finite number of open sets is still an open set.
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Definition 2.2 (Open sets in Rn (or general metric spaces)). A subset A ∈ Rn is an open

set if ∀x0 ∈ A, ∃ε > 0, s.t. Bε(x0) := {x | |x − x0| < ε} ⊂ A (that is to say, there exists a

neighborhood of x0 contained in A).

We can check that the above definition of open sets in Rn forms a topology.

Proposition 2.3

Any open set in R can be written as a union of countable many disjoint of open intervals.

Proof. Let I be our open set. ∀x ∈ I, define

ax := inf{z | (z, x) ⊂ I}, bx := {z | (x, z) ⊂ I}

(note that I is open, so these sets are nonempty). Then we have (ax, bx) ⊂ I, ax, bx /∈ I.

Thus I =
⋃
x∈I

(ax, bx).

Claim — ∀x, y ∈ I, either (ax, bx) = (ay, by) or (ax, bx) ∩ (ay, by) = ∅.

WLOG ax ≤ ay, if ay ≥ bx, the claim is already true. Otherwise ay < bx, we deduce that

ay = ax(otherwise ay ∈ I). Similarly bx = by, this completes the proof.

Hence I can be written as a union of disjoint open intervals, the number is clearly at

most countable many.

2.2 More definitions

Definition 2.4 (accumulation points). For X ⊂ Rn, x0 ∈ Rn is an accumulation point of

X if:

∃{xk}k≥1 ⊂ X,xk ̸= x0, s.t. xk → x0.

The derived set X ′ of X is the set of all the accumulation points of X, X := X ∪X ′ is the

closure of X.

For x ∈ X, if there’s a neighborhood of x which does not contain any other point in X,

we say x is an isolated point. It’s easy to see that a point in X is either an isolated point

or an accumulation point.

Definition 2.5 (Closed sets). A closed set is the completion of an open set.

Proposition 2.6

X is closed iff for every convergent sequence in X converges to a point in X.

Proof. Assume for contradiction that Xc is not open. Then there exists y0 ∈ Xc, ∀n >

1, B 1
n
(y0) ∩X is nonempty.
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Take yn ∈ B 1
n
(y0) ∩X, yn → y0 =⇒ y0 ∈ X, contradiction!

The other direction is trivial.

Proposition 2.7

The closure of a set X is the smallest closed set containing X.

Proof. Need to prove that ∀x0 ∈ X, ∃ε > 0, s.t. Bε(x0) ∩X = ∅.

Otherwise we have xn ∈ X∪X ′ such that xn → x0. if xn ∈ X ′, take yn ∈ X, |yn−xn| < 1
n
,

=⇒ yn → x0 =⇒ x0 ∈ X ′.

Therefore X is closed. It’s clear that any closed set containing X must contains X.

The interior points X̊ is the largest open set contained in X.

The boundary ∂X := X\X̊.

Definition 2.8 (Continuous map for topological spaces). X,Y are topological spaces, we

say a function f : X → Y is continuous if the pre-image of any open set in Y is open in X,

i.e. B ⊂ Y is open =⇒ f−1(B) ⊂ X is open.

Remark 2.9 — One can check that the definitions of continuous map in metric spaces

and topological spaces are equivalent.

Proof. There are two directions to prove:

• metric =⇒ topological

Take an open set U ∈ Y , ∀x ∈ f−1(U), f(x) ∈ U ,

=⇒ ∃ε > 0 s.t. Bε(f(x)) ⊂ U

=⇒ ∃δ > 0 s.t. f(Bδ(x)) ⊂ Bε(f(x))

=⇒ Bδ(x) ⊂ f−1(U)

• topological =⇒ metric

If xn → x0 in X, ∀ε > 0, f−1(Bε(f(x0))) is open in X. Since x0 ∈ f−1(Bε(f(x0))),

there exists δ > 0, Bδ(x0) ⊂ f−1(Bε(f(x0))).

∃N > 1, xn ∈ Bδ(x0) ⊂ f−1(Bε(f(x0))),∀n > N.

This implies |f(xn)− f(x0)| < ε, hence f(xn) → f(x0).

If A ⊂ X and A = X, then we say A is dense in X.

7



数学分析笔记 2022秋 3 Compactness

Theorem 2.10

A continuous map f : X → Y of metric spaces is uniquely determined by f |A, where A
is dense in X.

Corollary 2.11

card(C([0, 1])) = card(R), because Q is dense in R.

3 Compactness

3.1 Definition of compactness

Example 3.1

Recall: Bolzano-Weierstrass theorem:

In Rd, every bounded infinity seqeunce has a convergent subsequence.

We can see that in C[0, 1] this is not true. If we take ∥f − g∥ = sup
0≤x≤1

|f − g|, and

fn has non-zero value near 1
n
, fn(

1
n
) = 1. We have {fn} is bounded but ∥fm − fn∥ = 1

for all m ̸= n. Which means it doesn’t have a convergent subsequence.

Definition 3.2 (Open covering). For A ⊂ X, a collection of open sets {Uα} is an open

covering if A ⊂
⋃

α Uα.

Definition 3.3 (Compactness). A is compact if every open covering of A has a finite sub-

covering.

Theorem 3.4

If f : X → Y is continuous, then for any compact subset K ⊂ X, f(K) is compact in

Y .

Proof. Easily deduced from definitions of continuity and compactness.

Theorem 3.5 (Cantor nested closed sets)

If Fn is bounded and closed in Rn, and Fn ⊂ Fn−1, then
∞⋂

n=1

Fn ̸= ∅.

Proof. Take xn ∈ Fn−1\Fn(Assume first that Fn’s are different from each other).

{xn} is bounded =⇒ it has a accumulation point y =⇒ y ∈
∞⋂

n=1

Fn.

8



数学分析笔记 2022秋 3.2 Uniform continuity

Proposition 3.6

Compact in Rn ⇐⇒ bounded and closed.

Proof. =⇒ :

{Bn(0)} is an open covering =⇒ bounded.

Assume for contradiction that there exists a convergent sequence whose limit x0 /∈ K.

Note that {x | 2n−1 < |x − x0| < 2n+1, n ∈ Z} is an open covering, it has a finite

sub-covering =⇒ ∃N,B2−N (x0) ∩K = ∅.

This is a contradiction because x0 is the convergency point of a sequence in K.

⇐= :

Take an open covering {Uα}, since K is bounded, we can put K into a hypercube and

split it into several smaller cubes.

If K can’t be covered by finitely many Uα’s, we obtain a closed set K1 ⊂ K and K1

can’t be covered by finitely many open sets in {Uα}.
Repeat this process and by Cantor nested closed sets, there exists x0 ∈ Kn. But as n

grows larger, the open set containing x0 must contain Kn as well, contradction!

Definition 3.7 (Sequencial compactness). A subset K ⊂ X (X is a metric space) is se-

quencial compact if for all sequence in K, it has a subsequence converging to a point

inside K.

Theorem 3.8

Sequencial compactness is equivalent to compactness (in a metric sapce).

3.2 Uniform continuity

Definition 3.9 (Uniform continuity). f is a continuous function on a metric space X. It is

uniformly continuous if ∀ε > 0,∃δ > 0 such that

∀|x− y| < δ, |f(x)− f(y)| < ε.

Theorem 3.10

IfK is compact in a metric spaceX, f is continuous onK, then f is uniformly continuous

on K.

Proof. ∀x ∈ K, exists δ(x), {Bδ(x)(x)} is an open covering of K. Take a finite sub-covering,

and let δ = min{δ(x1), . . . , δ(xn)}

Definition 3.11. A sequence of functions fn(x) is uniformly convergent to f if ∀ε > 0,∃N
such that

∀n > N,∀x, |fn(x)− f(x)| < ε.
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Theorem 3.12

fn is continuous functions on X, {fn} uniformly converges to f =⇒ f continuous.

Proof.

|f(x)− f(x0)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(x0)|+ |fn(x0)− f(x0)|

Let n be sufficiently large and |x− x0| sufficiently small.

Remark 3.13 — The above theorem suggests that the “uniform” condition is kind of

like commutativity of taking limits.

Definition 3.14 (Normal vector spaces). A normal vector space (X, ∥·∥) where X is a vector

space, ∥·∥ is called norm satisfies:

• ∥x∥ ≥ 0, ∥x∥ = 0 ⇐⇒ x = 0;

• ∥λx∥ = |λ|∥x∥;

• ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

The norm gives the distant function in X, so a normal vector space automatically has a

metric structure.

A Banach space is a complete normal vector space.

Corollary 3.15

Define ∥f(x)∥∞ = supx∈K |f(x)|, for a function sequence {fn(x)} satisfying

∞∑
n=1

∥fn(x)∥∞ converges,

then
∞∑

n=1

fn(x) uniformly converges.

Example 3.16 (Weierstrass’ function)

Wa,b(x) =
∞∑

n=1

an cos(bnπx), 0 < a < 1

is a continuous function.
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Example 3.17

There exists a continous map from [0, 1] to [0, 1]2.

We can partition the unit square to smaller squares with side length 31−n, let the

image of fn(x) be diagnals of these squares.

We can see that |fn−1(x) − fn(x)| ≤ 31−n
√
2, so {fn} uniformly converges to a

function f . This is the desired continuous function.

4 Derivatives and differentiation

4.1 Definitions & basic properties

Definition 4.1 (derivatives). f is differentiable at a point x0 ∈ (a, b), if

f ′(x0) := lim
x→x0

f(x)− f(x0)

x− x0
exists,

and f ′(x0) is called the derivative of f at x0.

We say f is differentiable on (a, b) if f is differentiable at every point in (a, b).

Remark 4.2 — If f is differentiable at x0,

f(x) = f(x0) + f ′(x0)(x− x0) + o(x− x0)

which means we can approximatly view f as a linear function near x0.

If f has the k-th derivative on (a, b) and f (k) is continuous, we say f ∈ Ck(a, b). f is

called smooth if f ∈ C∞(a, b).

Proposition 4.3

Basic rules of taking derivatives:

• (af + bg)′ = af ′ + bg′;

• (fg)′ = f ′g + fg′;

• (f ◦ g)′ = (f ′ ◦ g) · g′.

They can be proved using the above remark or by definition.
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Example 4.4

Derivatives of elementary functions:

• f(x) = xn, f ′(x) = nxn−1;

• f(x) = ex, f ′(x) = ex,

lim
x→x0

ex − ex0

x− x0
= lim

x→x0

ex0(ex−x0 − 1)

x− x0
= ex0

• f(x) = lnx, f ′(x) = 1
x
,

lim
x→x0

lnx− lnx0
x− x0

= lim
x→x0

ln( x
x0

− 1)
x
x0

− 1
· 1

x0
=

1

x0

• f(x) = xα, f ′(x) = αxα−1, by the exponential function and the chain rule.

• (sinx)′ = cosx, (cosx)′ = − sinx.

Theorem 4.5 (Leibniz’s rule)

(f · g)(n) =
n∑

k=0

Ç
n

k

å
f (k)g(n−k)

Proposition 4.6

f(x) is differentiable at x0, f
′(x0) > 0 ⇐⇒ ∃δ > 0, such that f(x0 − h) < f(x0) <

f(x0 + h′),∀0 < h, h′ < δ.

Corollary 4.7

A differentiable function f on (a, b) is strictly increasing if f ′(x) > 0∀x ∈ (a, b).

local maximum/minimum

Theorem 4.8

If f has a local extrema x0, and f is differentiable at x0, then f
′(x0) = 0.

12



数学分析笔记 2022秋 4.2 Mean value theorems

4.2 Mean value theorems

Theorem 4.9 (Rolle’s theorem)

Suppose f is continuous on [a, b], differentiable on (a, b), and f(a) = f(b). Then there’s

a point ξ ∈ (a, b) such that f ′(ξ) = 0.

Proof. Assume that f is not constant. Take the global maximum and minimun of f . Since

f(a) = f(b), either of them must lie inside (a, b), this is the desired ξ.

The direct corollary of Rolle’s theorem is the following famous theorem:

Theorem 4.10 (Lagrange’s mean value theorem)

Suppose f is continuous on [a, b], differentiable on (a, b). Then there’s a point ξ ∈ (a, b)

such that f ′(ξ) = f(b)−f(a)
b−a

.

Corollary 4.11

A continuous function f(x) on [a, b] is differentiable on (a, b), and f ′(x) ≥ 0, then we

have f is increasing.

If f ′(x) > 0, f is striclty increaing.

Theorem 4.12

A function f ∈ C1(a, b), f ′(x0) ̸= 0, then there exists δ > 0 such that

f : (x0 − δ, x0 + δ) → (c, d) is a C1 homeomorphism

i.e. f is a bijection and f−1 is a C1 function.

Proof. WLOG f ′(x0) > 0, then f is increasing and continuous on (x0 − δ, x0 + δ). Thus f

has a continuous inverse f−1.

We only need to prove (f−1)′ is a C1 function.

lim
x→x0

f−1(x)− f−1(x0)

x− x0
= lim

u→u0

u− u0
f(u)− f(u0)

=
1

f ′(u)

Here we used f−1 is continuous.

Remark 4.13 — The above theorem can be generalized to Ck using induction.

13
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Theorem 4.14 (Darboux)

f is differentiable on [a, b], ∀u ∈ [min(f ′(a), f ′(b)),max(f ′(a), f ′(b))],∃c ∈ [a, b] such

that f ′(c) = u.

Proof. WLOG f ′(a) < 0 < f ′(b), u = 0 (replace f(x) with f(x)− ux).

Take the minimum of f(x), say c. We have c ̸= a, b and f ′(c) = 0.

Theorem 4.15 (Cauchy)

f, g are continuous functions on [a, b], differentiable on (a, b), and g′(x) ̸= 0,∀x ∈ (a, b).

Then

∃x0 ∈ (a, b), such that
f(b)− f(a)

g(b)− g(a)
=
f ′(x0)

g′(x0)
.

Proof. Darboux =⇒ g′ > 0 (or g′ < 0), thus g is stricly increasing (or decreasing).

C1 homeomorphism =⇒ ∃g−1 differentiable on [g(a), g(b)].

By lagrange’s mean value theorem we’re done.

Remark 4.16 — Alternative proof:

Use Rolle’s theorem on f(x)− f(b)−f(a)
g(b)−g(a)

(g(x)− g(a)) (here we need g(b) ̸= g(a)).

In fact we can use Rolle’s on F (x) := (g(b)− g(a))f(x)− (f(b)− f(a))(g(x)− g(a)),
and get (f(b)− f(a))g′(x0) = (g(b)− g(a))f ′(x0), where we don’t even use the condition

that g′(x) ̸= 0.

4.3 On different definitions of trig functions

Theorem 4.17

Suppose F : [a, b] → Rn, differentiable on (a, b) (every entry is differentiable). If F ′(x) =

0∀x, we have that F is constant.

Proof. F = (f1, . . . , fn), f
′
k(x) = 0, from Lagrange we deduce each fk is constant, so F is

constant as well.

Consider the exponent map e :Mn(R) →Mn(R):

A 7→
∞∑
k=0

Ak

k!
, ∥A∥ = sup |aij |

Fix a matrix A, then exA : R → Mn(R), since xA, yA are commutative, exA · eyA =

e(x+y)A.

14



数学分析笔记 2022秋 4.4 Differetiating infinite series

lim
h→0

e(x+h)A − exA

h
= lim

h→0

exA(ehA − In)

h

= exA lim
h→0

∞∑
k=1

hk−1Ak

k!

= exA ·A

Consider F : R → Rn satisfying F ′(x) = AF (x), where A ∈Mn(R). We want to find all

such functions F .

Since
d

dx

(
e−xAF (x)

)
= e−xA(−AF (x) + F ′(x)) = 0,

Hence e−xAF (x) is a constant.

Now we come back to look at our trignometry fuctions defined by sinx =
eix − e−ix

2i
, cosx =

eix + e−ix

2
. Let

F (x) =

Ç
sinx

cosx

å
=⇒ F ′(x) =

Ç
cosx

− sinx

å
=

(
0 1

−1 0

)Ç
sinx

cosx

å
= JF (x)

=⇒ F (x) = exJF (0) = exJ
Ç
0

1

å
is the unique function satisfying F ′(x) = JF (x).

By geometry definition of sinx, cosx, we can also deduce the above defferentiaition relations

(high school maths) and F (0), so the series definition coinsides with the geometry definition.

4.4 Differetiating infinite series

Theorem 4.18

fk are differentiable functions on [a, b],
∞∑
k=1

f ′
k(x) uniformly converges, and ∃x0 such that

∞∑
k=1

fk(x0) converges.

Then
∞∑
k=1

uniformly converges on [a, b], and

d

dx

(
∞∑
k=1

fk(x)

)
=

∞∑
k=1

d

dx
fk(x).

Proof. ∣∣∣∣∣
m∑

k=n

(fk(x)− fk(x0))

∣∣∣∣∣ =
∣∣∣∣∣(x− x0)

m∑
k=n

f ′
k(ξ)

∣∣∣∣∣ < ε|x− x0|

=⇒
∑
fk(x) uniformly converges.

15
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∀ε > 0,∃N such that ∣∣∣∣∣
m∑

k=n

f ′
k(x)

∣∣∣∣∣ < ε

3
, ∀n,m > N

By Lagrange’s theorem,∣∣∣∣∣
m∑

k=n

fk(x+ h)− fk(x)

h

∣∣∣∣∣ =
∣∣∣∣∣

m∑
k=n

f ′
k(x+ ξ)

∣∣∣∣∣ < ε

3

Fix h, let m→ ∞, we get ∣∣∣∣∣
∞∑

k=n

fk(x+ h)− fk(x)

h

∣∣∣∣∣ < ε

3
, ∀n > N

Thus

lim
h→0

Å∑∞
k=1 fk(x)−

∑∞
k=1 fk(x+ h)

h

ã
= lim

h→0

(
n∑

k=1

fk(x+ h)− fk(x)

h
+
∑
k>n

fk(x+ h)− fk(x)

h

)

=
n∑

k=1

f ′
k(x) + lim

h→0

∑
k>n

fk(x+ h)− fk(x)

h

Since the second part is uniformly small, thus by taking n → ∞ we get
∑
fk(x) is

differentiable and its derivative is precisely
∑
f ′
k(x).

Now we’ll give an example where fk’s are differentiable but
∑
fk is not.

Let

Wa,b(x) =
∞∑
k=1

an cos(bnπx), 0 < a < 1, ab > 1 +
3

2
π, 2 ∤ b

Claim 4.19 — Then Wa,b(x) is continuous on R, but is not differetiable at any point.

Clearly Wa,b is continuous as the sum uniformly converges.

Fix y) ∈ R, we’ll prove that Wa,b is not differentiable at y0. To prove this, we take a

sequence {yn} → y0 as follow:

Let δn = bny0 − zn ∈ [ 1
2
, 3
2
), where zn ∈ Z, let yn = zn

b
so that yn → y0.

W (yn)−W (y0)

yn − y0
=

n−1∑
k=1

ak(cos(bkπyn)− cos(bkπy0))

yn − y0
+
∑
k≥n

ak(cos(bkπyn)− cos(bkπy0))

yn − y0

While we have (by Lagrange’s theorem)

n−1∑
k=1

ak(cos(bkπyn)− cos(bkπy0))

yn − y0
=

n−1∑
k=1

(ab)kπ sin θk

and∑
k≥n

ak(cos(bkπyn)− cos(bkπy0))

yn − y0
=
∑
k≥n

ak(cos(bk−nznπ)− cos(bk−nπzn + bk−nπδn))

− δn
bn

=
∑
k≥n

akbn((−1)zn − cos(bk−nδnπ))

−δn

=
anbn(−1)zn+1

δn

∑
k≥n

ak−n(1− (−1)zn cos(bk−nδnπ))

16
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So taking absolute value of the above we deduce∣∣∣∣W (yn)−W (y0)

yn − y0

∣∣∣∣ ≥
∣∣∣∣∣∣∑k≥n

ak(cos(bkπyn)− cos(bkπy0))

yn − y0

∣∣∣∣∣∣−
∣∣∣∣∣
n−1∑
k=1

ak(cos(bkπyn)− cos(bkπy0))

yn − y0

∣∣∣∣∣
≥

∣∣∣∣∣∣a
nbn

δn

∑
k≥n

ak−n(1− (−1)zn cos(bk−nδnπ))

∣∣∣∣∣∣−
n−1∑
k=1

(ab)kπ

≥ anbn

δn
(1− cos(δnπ))−

anbnπ

ab− 1

≥ (ab)n
Å
2

3
− π

ab− 1

ã
where the last inequality is taking the k = n term in the sum. (This is valid because the

terms in the summation are all non-negative)

Since ab − 1 ≥ 3
2
π, as n → ∞, (ab)n can be arbitarily large, W (x) is not differentiable

at y0. This implies the desired result.

5 Applications of differentiation

5.1 L’Hopital’s rule

This well-known theorem has a reputation of “洛神” among students in high school

and non-mathematics major. But it’s not as useful as Taylor series to those who study

mathematics.

Theorem 5.1 (L’Hôpital’s rule, 0
0
)

f, g are differentiable functions on (a, b) satisfying

• lim
x→a+

f(x) = lim
x→a+

g(x) = 0;

• ∀x ∈ (a, b), g′(x) ̸= 0;

• lim
x→a+

f(x)

g(x)
exists (possibly infinity).

Then we have

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)

Proof. Let F (a) = G(a) = 0, F (x) = f(x), G(x) = g(x), x > a.

F,G are continuous on [a, a+b
2
] and differetiable on (a, a+b

2
), by Cauchy’s theorem:

lim
x→a+

F (x)− F (a)

G(x)−G(a)
= lim

x→a+

F ′(ξ)

G′(ξ)
= lim

x→a+

f ′(ξ)

g′(ξ)
= lim

x→a+

f ′(x)

g′(x)
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Theorem 5.2 (L’Hôpital’s rule, ∞
∞)

f, g are differentiable functions on (a, b) satisfying

• lim
x→a+

|f(x)| = lim
x→a+

|g(x)| = +∞;

• ∀x ∈ (a, b), g′(x) ̸= 0;

• lim
x→a+

f(x)

g(x)
exists (possibly infinity).

Then we have

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)

Proof. WLOG g′(x) < 0 (Darboux grants that g′ does not change sign), let y = g(x), since

we have g stricly decreasing, g is a bijection:(a, b) → (g(b),+∞).

Note that:
f(x)

g(x)
=
f(g−1(y))

y

d

dy
f(g−1(y)) = f ′(x) · 1

g′(x)

This shows that we may assume g(x) = x and x ∈ (c,+∞) to simplify the situation.

Suppose limx→a+ f ′(x) = A (possibly infinity),

f(x)

x
=
f(x0) + f ′(ξ)(x− x0)

x
, ξ ∈ (x0, x)

Take x0 large, so that f ′(ξ) is close to A; then let x suffiently large,

f(x)

x
= f ′(ξ)(1− x0

x
) +

f(x0)

x
→ A

Remark 5.3 — To prove the case where a = ∞, use the map x 7→ 1
x
.

Remark 5.4 — The condition that g′(x) ̸= 0 in L’hopital’s rule is necessary, since we

can take f(x) = x+ sinx cosx, g(x) = esin x(x+ sinx cosx) and let x→ +∞.

We have

lim
x→+∞

f ′(x)

g′(x)
= 0 but lim

x→+∞

f(x)

g(x)
doesn’t exist.

5.2 Taylor series

This is the idea of approximating general functions using polynomials.
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Theorem 5.5 (Taylor series)

There are 3 types of remainder:

1. Peano: Let f(x) be a function that has n-th derivative at point a,

f(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k + o((x− a)n)

2. Lagrange: Let f(x) ∈ Cn[a, b] be a function that has (n + 1)-th derivative on

interval (a, b), then ∀x ∈ [a, b], ∃ξ ∈ [a, b],

f(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k +

f (n+1)(ξ)

(n+ 1)!
(x− a)n+1

3. Cauchy: Same conditions as above, then ∀x ∈ [a, b], ∃ξ ∈ [a, b],

f(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k +

f (n+1)(ξ)

n!
(x− ξ)n(x− a)

Proof. • Peano: f has (n− 1)-th derivative on a neighborhood of a, use L’Hopital’s rule

(n− 1 times) on

lim
x→a

f(x)−
∑n

k=0
f(k)(a)

k!
(x− a)k

(x− a)n

to get it is 0.

• Lagrange & Cauchy: Fix x, define F (t) on [a, x]:

F (t) :=
n∑

k=0

f (k)(t)

k!
(x− t)k, F ′(t) =

f (n+1)(t)

n!
(x− t)n.

Use Cauchy’s mean value theorem, for any G(t)

F (x)− F (a)

G(x)−G(a)
=
F ′(ξ)

G′(ξ)

The remainder

f(x)− F (a) =
G(x)−G(a)

G′(ξ)
· f

(n+1)(ξ)

n!
(x− ξ)n

Take G(t) = x − t to get Cauchy remainder, take G(t) = (x − t)n+1 to get Lagrange

remainder.

Remark 5.6 — The polynomial in Taylor series is the optimal approximation to f .

19



数学分析笔记 2022秋 5.3 Convexity

Example 5.7

Taylor series of ex at 0:

ex =
n∑

k=0

xk

k!
+ o(xn)

5.3 Convexity

Definition 5.8 (Convex functions). We say a function f is convex on (a, b), if ∀0 ≤ t ≤
1,∀x, y ∈ (a, b),

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

In other words, the function’s image is below the segment joining any two points on it.

The definition of convex function is equivalent to ∀x < z < y,

f(x)− f(z)

x− z
≤ f(x)− f(y)

x− y
≤ f(y)− f(z)

y − z
.

Definition 5.9 (Convex sets). For a vector space V , we say X ⊂ V is convex if ∀x, y ∈
X, t ∈ [0, 1], tx+ (1− t)y ∈ X.

Theorem 5.10 (Jensen’s inequality)

If f is convex on (a, b), t1, . . . , tn ≥ 0,
∑
ti = 1, then

f

(
n∑

i=1

tixi

)
≤

n∑
i=1

tif(xi).

Theorem 5.11

If f is convex on (a, b), a < x < y < b, we have

D−(f)(x) ≤ D+(f)(x) ≤
f(x)− f(y)

x− y
≤ D−(f)(y) ≤ D+(f)(y)

where D−, D+ are left and right derivatives.

Proof. It’s obvious by the alternative definition of convex functions.

i.e. take h→ 0, a < x−h < x < x+h < y−h < y < y+h < b. Monotone and bounded

implies the derivatives exist.

Theorem 5.12

A function f is continuous on (a, b) and D+(f) is increasing ⇐⇒ f is convex.
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Proof. “ ⇐= ” is already proved.

Now assume f is continous and D+(f) is increasing.

We’re going to prove that for x < z < y,

f(x)− f(z)

x− z
≤ f(y)− f(z)

y − z
.

Without loss of generality, suppose that D+(f)(z) = 0 = f(z) (otherwise we subtract a

linear function from f(x)).

Thus D+(f)(x) ≤ 0,∀x ≤ z and D+(f)(y) ≥ 0,∀y ≥ z.

If ∃y0 > z, f(y0) < 0, let y∗ := inf{y | f(y) < 0, z ≤ y ≤ y0}, from continuity we have

f(y∗) = 0, and ∃{yn} → y∗, f(yn) < 0.

=⇒ D+(f)(y∗) = lim
n→∞

f(yn)− f(y∗)

yn − y∗
≤ 0

Let gε(x) = f(x) + ε(x− z), D+(gε) > 0, apply the above to gε, we have gε(y) > gε(z).

Therefore f(y) + ε(y − z) > 0,∀ε > 0 =⇒ f(y) ≥ 0.

∀x1 < x2 < z, f has a minimum point x′ in [x1, x2].

If x′ ̸= x2, we deduce D+(f)(x
′) ≥ 0.

Similarly define g−ε, then g−ε(x) > g−ε(z),∀ε > 0 =⇒ f(x) ≥ 0.

Hence
f(x)− f(z)

x− z
≤ 0 ≤ f(y)− f(z)

y − z
.

Example 5.13 (Minkowski’s inequality)

Define a norm in Rn:

x = (x1, . . . , xn), ∥x∥lp :=

(
n∑

i=1

|xi|p
) 1

p

.

We want to prove ∥x∥+ ∥y∥ ≥ ∥x+ y∥.
By Jensen’s inequality, xp is convex when p ≥ 1, so

n∑
i=1

(xi + yi)
p ≤

n∑
i=1

Å
t
(xi
t

)p
+ (1− t)

Å
yi

1− t

ãpã
=

n∑
i=1

xpi t
1−p +

n∑
i=1

ypi (1− t)1−p.

By choosing t such that the above two terms are equal, we get the result.
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6 Integration

6.1 Riemann-Stieltjes integral

Definition 6.1. A partition of a closed interval [a, b] σ = {a = x0 < x1 < · · · < xn−1 <

xn = b}. Given an increasing function µ(x) and a bounded function f(x).

Define

∆i = µ(xi)− µ(xi−1) ≥ 0, Mi = sup
x∈[xi−1,xi]

f(x), mi = inf
x∈[xi−1,xi]

f(x).

The step length |σ| = max1≤i≤n |xi − xi−1|
Define the upper and lower Darboux sums:

Sµ(f ;σ) =
n∑

i=1

Mi∆i =
n∑

i=1

Mi(µ(xi)− µ(xi−1))

Sµ(f ;σ) =
n∑

i=1

mi∆i =
n∑

i=1

mi(µ(xi)− µ(xi−1))

Define the upper and lower integrals of f :∫ b

a

fdµ = inf
σ
Sµ(f ;σ),

∫ b

a

fdµ = sup
σ
Sµ(f ;σ)

Definition 6.2. Given an increasing function µ(x) on [a, b], we say a bounded function f is

Riemann-Stieltjes integrable, if ∫ b

a

fdµ =

∫ b

a

f dµ

and denote the value by
∫ b

a
fdµ.

All integrable functions on [a, b] form a vector space, denoted by R([a, b]).

Given partitions σ, σ1, if all the partition points of σ1 are in σ, i.e. σ1 ⊂ σ, we say σ is

a refinement of σ1.

Denote by σ1 ∪ σ2 the partition that contains the points in the union of σ1 and σ2.

Theorem 6.3

If σ1 ⊂ σ2, then

Sµ(f ;σ1) ≥ Sµ(f ;σ2), Sµ(f ;σ1) ≤ Sµ(f ;σ2)

Proof. WLOG σ2 = σ1 ∪ {y0}, y0 ∈ (x0, x1), where σ1 = {x0 < x1 < · · · < xn}.

Sµ(f ;σ1)− Sµ(f ;σ2) = sup
x∈[x0,x1]

f(x)(µ(x1)− µ(x0))

− sup
x∈[x0,y0]

f(x)(µ(y0)− µ(x0))− sup
x∈[y0,x1]

f(x)(µ(x1)− µ(y0))

≥ 0.
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Corollary 6.4

The upper integral is greater than or equal to the lower integral. i.e.∫ b

a

f dµ ≥
∫ b

a

f dµ

Proof. For any partition σ1, σ2,

Sµ(f ;σ1) ≥ Sµ(f ;σ1 ∪ σ2) ≥ Sµ(f ;σ1 ∪ σ2) ≥ Sµ(f ;σ2)

Corollary 6.5

A function f is integrable ⇐⇒ ∀ε > 0, ∃σ, such that

Sµ(f ;σ)− Sµ(f ;σ) < ε.

Remark 6.6 — This is equivalent to

n∑
i=1

(Mi −mi)(µ(xi)− µ(xi−1)) < ε.

If f is integrable, we have ∀ε > 0, ∃ partition σ, ∀ξi ∈ [xi−1, xi],∣∣∣∣∣
n∑

i=1

f(ξi)(µ(xi)− µ(xi−1))−
∫ b

a

f dµ

∣∣∣∣∣ < ε

The first term is called the Riemann sum.

6.2 Criteria for integrable functions

Theorem 6.7

All continuous functions on [a, b] are integrable.

Proof. Let ωi(f) := supx,y∈[xi−1,xi]
|f(x)− f(y)|.

f is uniformly continuous, so as |σ| → 0, ωi(f) can be arbitarily small, from this we

deduce f is intergrable.

Theorem 6.8

If f is monotone and bounded on [a, b], µ is continuous (actually we only need that the

discontinuous points of µ and f do not coincide), then f is integrable.
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Proof. µ is uniformly continuous, ∆i can be arbitarily small.

Theorem 6.9

If Φ is continuous, f is integrable, then Φ(f(x)) is integrable.

Proof. Φ uniformly continuous =⇒ ∀ε > 0,∃δ > 0

|Φ(f(x))− Φ(f(y))| < ε,∀|f(x)− f(y)| < δ.

f integrable =⇒ ∀ε0 > 0, ∃σ,
n∑

i=1

ωi(f)∆i < ε0.

n∑
i=1

ωi(Φ ◦ f)∆i =
n∑

i=1

sup |Φ(f(x))− Φ(f(y))| ·∆i

=
∑

ωi(f)<δ

ε∆i +
∑

ωi(f)≥δ

2M∆i (M = sup |Φ|)

≤ ε|µ(b)− µ(a)|+ 2M
∑

ωi(f)≥δ

∆i

≤ ε|µ(b)− µ(a)|+ 2Mδ−1

n∑
i=1

ωi(f)∆i

≤ ε|µ(b)− µ(a)|+ 2Mδ−1ε0

We’re done by letting ε0 < δε.

Proposition 6.10

Properties of integrable functions:

• R(µ) is a vector space;

• ∀f ≤ g,
∫ b

a
f dµ ≤

∫ b

a
g dµ;

• f is integrable on [a, b], ∀c ∈ (a, b), f is integrable on [a, c] and [c, b],
∫ b

a
f dµ =∫ c

a
f dµ+

∫ b

c
f dµ;

• f integrable =⇒ |f | integrable,
∫ b

a
f dµ ≤

∫ b

a
|f |dµ;

• α > 0, β > 0, µ, ν increasing, then
∫ b

a
f d(αµ+ βν) = α

∫ b

a
f dµ+ β

∫ b

a
f dν;

• f, g integrable =⇒ fg integrable.
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Example 6.11

Given 0 ≤ α < β, define jump function:

j(x) =


0, x < 0

α, x = 0

β, x > 0

For a function f which is continuous at s, we have∫ b

a

f(x) dj(x− s) = f(s)β.

proof: s ∈ σ, Sµ(f ;σ) =Mi−1(µ(s)−µ(xi−1))+Mi(µ(sxi)−µ(s)) =Mi−1α+Mi(β−α).

Example 6.12

Given γn ≤ βn ≤ αn,
∑

(αn − γn) converges, xn ∈ [a, b] are distinct.

Define:

J(x) =
∞∑

n=1

jn(x), where jn(x) =


γn, x < xn

βn, x = xn

αn, x > xn

Then for f continuous at all the xn’s, we have∫ b

a

f dJ =
∞∑

n=1

f(xn)(αn − γn) =
∞∑

n=1

∫ b

a

f djn

Proof. ∀ε > 0,∃N such that
∑

n>N

(αn − γn) < ε.

=⇒
∣∣∣∣∣
∫ b

a

f dJ −
n∑

k=1

f(xk)(αk − γk)

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

f d

(
J −

n∑
k=1

jk

)∣∣∣∣∣
≤ sup |f | ·

∣∣∣∣∣
(
J −

n∑
k=1

jk

)
(b)−

(
J −

n∑
k=1

jk

)
(a)

∣∣∣∣∣
≤ sup |f |

∑
k>N

(αk − γk) < ε

We still need to prove f is integrable.

Let µN =
N∑

k=1

jk(x− xk), ∀ε > 0, ∃σ such that

n∑
i=1

ωi(f)(J(ξi)− J(ξi−1)) =
n∑

i=1

ωi(f)|µN (ξi)− µN (ξi−1)|

+
n∑

i=1

ωi(f)|(J − µN )(ξi)− (J − µN )(ξi−1)|

≤ ε+ 2 sup |f | · |(J − µN )(b)− (J − µN )(a)| < (1 + 2 sup |f |)ε.
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6.3 Fundamental theorem of calculus

Theorem 6.13 (Fundamental theorem of calculus - 1)

f is Riemann integrable on [a, b], define F (x) =
∫ x

a
f(t) dt. Then F is continuous on

[a, b]. If f is continuous at x0, then F is differentiable at x0 and F ′(x0) = f(x0).

Proof. F (x0 + h)− F (x0) =
∫ x0+h

x0
f(t) dt ≤

∫ x0+h

x0
|f(t)|dt ≤ sup |f | · h.

When f is continuous at x0,

lim
h→0

F (x0 + h)− F (x0)

h
= lim

h→0

1

h

∫ x0+h

x0

f(t) dt = f(x0)

Theorem 6.14 (Fundamental theorem of calculus - 2)

Given differentiable function F (x) on [a, b], and F ′ is Riemann integrable on [a, b], then∫ b

a

F ′(x) dx = F (b)− F (a)

Proof.

F (b)− F (a) =
n∑

i=1

(F (xi)− F (xi−1)) =
n∑

i=1

F ′(ξi)(xi − xi−1) →
∫ b

a

F ′(x) dx

This theorem is also called Newton-Lebniz formula. From this and the rules of taking

derivatives, we get:

Corollary 6.15 (Intergration by parts)

F,G is differentiable on [a, b], and the derivatives are Riemann integrable.∫ b

a

FG′ dx = (FG)
∣∣b
a
−
∫ b

a

F ′Gdx

Theorem 6.16 (Taylor series with integral remainder)

f ∈ Cm+1[a, b], then

f(x) =
m∑

k=0

f (k)(a)

k!
(x− a)k +

∫ x

a

(x− t)m

m!
f (m+1)(t) dt.

Because of the fundamental theorem of calculus, when we compute integrals, we often

want to find the function F . This is the reverse of taking derivatives, and it’s called indefinite

integrals.
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Corollary 6.17 (Intergration by substitution)

∫
f(y) dy = F (y) + C =⇒

∫
f(y(x))y′(x) dx = F (y(x)) + C

u′(t) ̸= 0,

∫
f(u(t))u′(t) dt = F (t) + C =⇒

∫
f(y) dy = F (u−1(y)) + C

Example 6.18 (Wallis’ integral formula)

Let

In =

∫ π
2

0

sinn θ dθ,

we have

lim
n→∞

In
√
n =

…
π

2
.

Proof.

In+2 =

∫ π
2

0

sinn θ(1− cos2 θ) dθ

= In −
∫ π

2

0

cos2 θ sinn θ dθ

= In −
∫ π

2

0

cos θ

n+ 1
d sinn+1 θ

= In − cos θ sinn+1 θ

n+ 1

∣∣∣∣∣
π
2

0

+
1

n+ 1

∫ π
2

0

sinn+1 θ(− sin θ) dθ

= In − 1

n+ 1
In+2

Thus In+2 =
n+1
n+2

In, I0 =
π
2
, I1 = 1.

I2n =
(2n)!

((2n)!!)2
· π
2
=

(2n)!

22n(n!)2
· π
2

I2n+1 =
22n(n!)2

(2n+ 1)!

I2n · I2n+1 =
π

2(2n+1)
, let xn = In

»
n · 2

π
, note that

xn+2

xn
=

n+ 1√
n(n+ 2)

> 1, x2nx2n+1 =

…
2n

2n+ 1

so {x2n}, {x2n+1} are increasing,

=⇒ limn→∞ x2n = limn→∞ x2n+1 = 1.

Example 6.19 (Stirling’s formula)

lim
n→∞

n!en

nn+ 1
2

=
√
2π
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Proof. Let an =
enn!

nn+ 1
2

.

ln
an
an+1

= (n+
1

2
) ln(1 +

1

n
)− 1 > 0

Where the inequality follows from Taylor’s series: ln(1 + x) ≥ x− x2

2
+ x3

3
− x4

4
.

Therefore an > an+1 > 0, lim
n→∞

an exists, let it be α.

From Wallis’ formula,»
2(2n+ 1)I2n+1 =

»
2(2n+ 1)

22n(n!)2

(2n+ 1)!

=
a2n

a2n
√
2
·

√
2n√

2n+ 1
−→

√
π

By taking n→ ∞, we get α =
√
2π, as desired.

6.4 Mean value theorem for integrals

Theorem 6.20 (First mean value theorem)

Suppose µ is increasing on [a, b] and f is continuous, g is non-negative and integrable

on [a, b]. Then ∃ξ ∈ [a, b] such that∫ b

a

fg dµ = f(ξ)

∫ b

a

g dµ.

Proof.

min

Ç
f(x)

∫ b

a

g dµ

å
≤
∫ b

a

fg dµ ≤ max

Ç
f(x)

∫ b

a

g dµ

å
From intermediate value theorem on f we get the result.

Theorem 6.21 (Second mean value theorem)

If g is Riemann integrable on [a, b], f is non-negative and decreasing on [a, b]. Then

∃c ∈ [a, b] such that ∫ b

a

fg dx = f(a)

∫ c

a

g dx.

Proof. We prove that case where g is continuous first.

Let G(x) =
∫ x

a
g(t) dt. By intergration by parts (here we make use of Stieltjes integral),

−
∫ b

a

(−f) dG = (f ·G)
∣∣b
a
+

∫ b

a

G(x) d(−f).

And note that

f(a)minG ≤ (f ·G)
∣∣b
a
+

∫ b

a

G(x) d(−f) ≤ f(a)maxG

By intermediate theorem on G and we’re done.
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Now we come back to the general case. Since g is integrable, ∀ε > 0, there exists a

continuous (actually we can let it be smooth) function gε s.t.
∫ b

a
|g − gε|dx < ε.

(The process is quite boring, the sketch is that we find a elchelon function first, and use

a continuous(smooth) function to approch it)

Hence ∃cε ∈ [a, b] such that∫ b

a

fgε dx = f(a)

∫ cε

a

gε dx.

∫ b

a

fg dx =

∫ b

a

f(g − gε) dx− f(a)

∫ cε

a

(g − gε) dx+ f(a)

∫ cε

a

g dx

=⇒
∣∣∣∣∣
∫ b

a

fg dx− f(a)

∫ cε

a

g dx

∣∣∣∣∣ ≤ 2f(a)(b− a)ε

From here we claim that there exists c ∈ [a, b] s.t.
∫ b

a
fg dx = f(a)

∫ c

a
g dx.

Because the range of G(t) := f(a)
∫ t

a
g dx is a closed interval(intermediate value theo-

rem), and it can be arbitarily close to
∫ b

a
fg dx, so it must contains

∫ b

a
fg dx.

Remark 6.22 — This proof shows the idea of “approximating general functions using

good functions” again. This is an important method in analysis.

Corollary 6.23

If f is monotone and g integrable on [a, b], then ∃c ∈ [a, b],∫ b

a

f(x)g(x) dx = f(a)

∫ c

a

g(x) dx+ f(b)

∫ b

c

g(x) dx.

6.5 Improper integrals

When we talk about Riemann integral
∫ b

a
f(x) dx, we require that [a, b] is a closed interval

and f is bounded. There are 2 cases which make the integral “improper”, namely when one

of a, b is infinity or f is unbounded.

We can combine these 2 cases into one: on interval [a, b) (where b can be infinity),

if ∀c ∈ [a, b), f is Riemann-integrable on [a, c], and lim
c→b−

∫ c

a
f(x) dx exists, we define the

improper integral
∫ b

a
f(x) dx to be the limit.

For an open interval (a, b),
∫ b

a
f(x) dx = lim

ε2,ε1→0+

∫ b−ε1
a+ε2

f(x) dx, here ε1, ε2 are indepen-

dent variables.

Example 6.24

∫ +∞

1

dx

xα
= lim

N→+∞

∫ N

1

dx

xα
= lim

N→+∞

N1−α − 1

1− α

When α > 1 it is convergent, and divergent otherwise.
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If an improper integral
∫ b

a
|f |dx is convergent, we say f is absolutely convergent.

This implies that
∫ b

a
f dx converges.(by Cauchy convergence criterion)

If
∫ b

a
f(x) dx is not absolutely convergent but it converges, we say it’s conditionally

convergent.

Example 6.25

∫ +∞

1

sinx

x
dx = lim

N→+∞

Ç
−
∫ N

1

d cosx

x

å
= lim

N→+∞

Ç
− cosx

x

∣∣∣N
1
−
∫ N

1

cosx

x2
dx

å
= cos 1−

∫ +∞

1

cosx

x2
dx

So it converges, but obviously it’s not absolutely convergent.

Example 6.26 (The Γ function)

Γ(s) :=

∫ +∞

0

e−xxs−1 dx∫ 1

0

e−xxs−1 dx ≤
∫ 1

0

xs−1 dx =
xs

s

∣∣∣∣1
0

=
1

s∫ +∞

1

e−xxs−1 ≤ C(s)

∫ +∞

1

dx

x2
< +∞

where C(s) is a constant, so it is well-defined (i.e. the integral converges).

Some facts about Γ function:

Γ(s+1) =

∫ +∞

0

e−xxs dx = −
∫ +∞

0

xs de−x = − xse−x
∣∣+∞
0

+

∫ +∞

0

e−xsxs−1 dx = sΓ(s).

Γ

Å
1

2

ã
=

√
π, Γ(p)Γ(1− p) =

π

sin(pπ)
, 0 < p < 1.

6.6 Integration and differentiation

Theorem 6.27 (Integrating infinte series)

Let fn be integrable functions on [a, b],
∞∑

n=1

fn uniformly converges and the sum is inte-

grable, then ∫ b

a

(
∞∑

n=1

fn(x)

)
dx =

∞∑
n=1

∫ b

a

fn(x) dx.

Proof. ∀ε > 0,∃N such that |
∑∞

k=n fk(x)| < ε, ∀x ∈ [a, b], n > N .
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Thus ∣∣∣∣∣
∫ b

a

∞∑
n=1

fn(x) dx−
N∑

n=1

∫ b

a

fn(x) dx

∣∣∣∣∣ < ε(b− a)

Example 6.28

∫ x

0

1

1− t
dt =

∫ x

0

(1 + t+ t2 + · · · ) dt, |x| < 1

=⇒ − ln(1− x) = x+
x2

2
+ · · · , |x| < 1

Similarly,
1

1 + x2
= 1− x2 + x4 − · · · , |x| < 1

=⇒ arctanx = x− x3

3
+
x5

5
− · · · , |x| < 1

Taking the limit x→ 1 we get:

π

4
= 1− 1

3
+

1

5
− · · ·

Proposition 6.29 (Differentiate an intergral with a parameter)

Suppose a function f(x, t) : [a, b] × [c, d] → R is continuous, and ∂f
∂t
(x, t) is continuous.

Let

F (t) =

∫ b

a

f(x, t) dx

Then

F ′(t) =

∫ b

a

∂f

∂t
(x, t) dx, t ∈ [c, d]

Proof. By Lagrange’s mean value theorem,

F (t+ h)− F (h)

h
−
∫ b

a

∂f

∂t
(x, t) dx =

∫ b

a

Å
∂f

∂t
(x, t+ θh)− ∂f

∂t
(x, t)

ã
dx

where θ = θ(x, h) ∈ [0, 1].

From the continuity of ∂f
∂t
(x, t) and the compactness of [a, b]× [c, d], we know ∂f

∂t
(x, t) is

uniformly continuous.

Thus ∀ε, ∃δ, ∀|h| < δ, |∂f
∂t
(x, t+ θh)− ∂f

∂t
(x, t)| < ε.∣∣∣∣∣F (t+ h)− F (h)

h
−
∫ b

a

∂f

∂t
(x, t) dx

∣∣∣∣∣ <
∫ b

a

εdx = (b− a)ε
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Proposition 6.30 (Differentiate an improper intergral with a parameter)

Suppose a function f(x, t) and ∂f
∂t
(x, t) is continuous on [a, b) × [c, d]. The integral of

∂f
∂t
(x, t) on [a, b) is uniformly convergent with respect to t.

If there exists t0 ∈ [c, d] such that f(x, t0) is integrable on [a, b) (the improper

integral converges), then
∫ b

a
f(x, t) dx is uniformly convergent with respect to t.

Let

F (t) =

∫ b

a

f(x, t) dx

we have

F ′(t) =

∫ b

a

∂f

∂t
(x, t) dx, t ∈ [c, d]

Proof. Take a sequence {bn} → b, let

Fn(t) =

∫ bn

bn−1

f(x, t) dx.

From the above proposition, we know

F ′
n(t) =

∫ bn

bn−1

∂f

∂t
(x, t) dx.

By the conditions,
∑
F ′
n(t) uniformly converges, and ∃t0 s.t.

∑
Fn(t0) converges.

We deduce the conclusion from Theorem 4.18:

F ′(t) =

(
∞∑
i=1

Fn(t)

)′

=
∞∑

n=1

F ′
n(t) =

∫ b

a

∂f

∂t
(x, t) dx

Example 6.31

We have ∫ +∞

0

sinx

x
dx =

π

2

by computing the derivative of

F (t) =

∫ +∞

0

e−tx sinx

x
dx

and proving F is continuous at 0.
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7 Applications of integration

7.1 The uniqueness of the solution of ODE(Optional)

We need some preparations before we actually handle it:

Theorem 7.1 (Contraction mapping principle)

Let (X, d) be a complete metric space. If a continuous map T : X → X and a constant

0 < γ < 1 satisfying

d(T (x), T (x′)) ≤ γd(x, x′).

Then T has a unique fixed point x∗.

Proof. Let x0 be an arbitarty point in X, and xn+1 = f(xn), then {xn} is Cauchy therefore

convergent.

Let y be the convergency point, we have f(y) = y since f is contiuous. The uniqueness

of y is trivial.

Now comes the main theorem:

Theorem 7.2 (Cauchy-Lipschitz)

Let Ω ⊂ Rn be an open set, f be a continuous function on Ω×(a, b) satisfying that there

exists a constant C > 0, s.t. ∀t ∈ (a, b),

|f(x, t)− f(y, t)| ≤ C|x− y|, ∀x, y ∈ Ω, t ∈ (a, b)

Then for any (x0, t0) ∈ Ω× (a, b), there exists δ = δ(x0, t0) > 0, such that there’s a

unique map x(t) : (t0 − δ, t0 + δ) → Ω satisfying:x′(t) = f(x(t), t)

x(t0) = x0

Proof. First we solve the equation

x′(t) = f(x0, t), x(t0) = x0

By Newton-Leibniz formula we get a solution

x1(t) = x0 +

∫ t

t0

f(x0, τ) dτ, t ∈ (a, b)

If we substitute x1 into the equation we’ll get another solution x2, and a series of function

xn(t), we wish to prove it converges to the desired function. This process is called Picard

iteration.

Let

T (x(t)) = x0 +

∫ t

t0

f(x(τ), τ) dτ

33



数学分析笔记 2022秋 7.1 The uniqueness of the solution of ODE(Optional)

be a map.

We want to use Contraction mapping principle on this map to get the “fixed point”.

To do this, we need to find a complete metric spaceX and prove T is indeed a contraction

map.

Construction of space X:

X = {x(t) | x : [t0 − δ, t0 + δ] → Ω continuous, x(t0) = x0}

where the distance is given by L∞ norm:

∥x(t)∥ := sup
t∈[t0−δ,t0+δ]

|x(t)|.

Remark 7.3 — We can check this is indeed a metric space. But X isn’t complete,

because the image set Ω is open (there can be a series of function {xn(t)} with xn(t1) →
y ∈ ∂Ω for some t1 ∈ [t0 − δ, t0 + δ]).

To solve this problem, we need to restrict the image of x to a closed subset of Ω.

Since Ω is open, ∃δ0 > 0 such that Bδ0(x0) ⊂ Ω.

Let X ′ = {x ∈ X | ∥x(t)−x0∥ ≤ δ1 < δ0}, X ′ is a closed subset of X and thus complete.

Now we’re going to prove T : X ′ → X ′ is a contraction map.

First note that T (x) is continuous (f, x both are continuous), T (x(t0)) = t0.

Check T (x) ∈ X ′: Since f is continuous on the closed set Bδ1(x0) × [t0 − δ, t0 + δ], |f |
has a bound M .

∥T (x(t))− x0∥ ≤ |t− t0|M ≤ δM

So we need δ < δ1
M
.

From the Lipschitz condition of f ,

|T (x(t))− T (y(t))| =
∣∣∣∣∫ t

t0

(f(x(τ), τ)− f(y(τ), τ)) dτ

∣∣∣∣
≤
∣∣∣∣∫ t

t0

C|x(τ)− y(τ)|dτ
∣∣∣∣

≤ Cδ∥x− y∥, ∀t ∈ [t0 − δ, t0 + δ]

Thus if we take δ < min{ 1
2C
, δ1
M
}, T is a contraction map. Hence the conclusion follows

from Theorem 7.1.

But usually we’ll see the differential equations containing terms like f ′′(x), the solution

is: to view the equations as equations of a vector-valued function F (x) = (f(x), f ′(x)).

With this tool we’ll prove the famous Kepler’s laws of planetary motion.

• Each planet’s orbit about the Sun is an ellipse. The Sun is at one focus.

• The imaginary line joining a planet and the Sun sweeps equal areas of space during

equal time intervals as the planet orbits.
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• The squares of the orbital periods of the planets are directly proportional to the cubes

of the semi-major axes of their orbits.

These laws are derived from a lot of observations by Kepler. Now we’re trying to imply

these laws from Newton’s laws by solving differetial equations.

The location of a planet is a function with respect to the time t: γ : R → R3. We write

γ(t) = (x(t), y(t), z(t)).

The velocity and acceleration are denoted by γ̇ and γ̈ (where the dots represents the

derivative).

By Newton’s laws we have

mγ̈(t) = −GMm

r2
· γ(t)
r
.

WLOG z(0) = z′(0) = 0 (by choosing a suitable coordinate system).

d

dt
(γ × γ̇) = γ̇ × γ̇ + γ × γ̈ = 0

This tells us γ× γ̇ = γ(0)× γ̇(0),∀t. We’ll prove the third coordinate(z) is always 0 and

reduce it to a two-dimensional problem.

γ × γ̇ = (yz′ − zy′, zx′ − xz′, xy′ − yx′) = γ(0)× γ̇(0) = c(0, 0, 1)

We may assume xy′ − yx′ ̸= 0 (otherwise the locus lies within a straight line), hence we have

z = z′ = 0 by solving linear equations.

Let γ(t) = (x(t), y(t)) = r(cos θ, sin θ). Compute:

γ̇(t) = (r′ cos θ − r sin θ · θ′, r′ sin θ + r cos θ · θ′)

γ̈(t) = (r′′ cos θ − 2r′ sin θ · θ′ − r(sin θ · θ′′ + cos θ · (θ′)2),

r′′ sin θ + 2r′ cos θ · θ′ + r(cos θ · θ′′ − sin θ · (θ′)2))

The equation gives

r′′ cos θ − 2r′ sin θ · θ′ − r(sin θ · θ′′ + cos θ · (θ′)2) = −GM
r2

cos θ (1)

r′′ sin θ + 2r′ cos θ · θ′ + r(cos θ · θ′′ − sin θ · (θ′)2) = −GM
r2

sin θ (2)

Observe that (1)× sin θ − (2)× cos θ = 0 and (1)× cos θ + (2)× sin θ = −GM
r2

:

2r′θ′ + rθ′′ = 0 (3)

r′′ − r(θ′)2 = −GM
r2

(4)

Now (3) gives 0 = 2rr′θ′ + r2θ′′ = (r2θ′)′ =⇒ r2θ′ = c which is Kepler’s 2nd law.

(The tiny sector which was swept through with radius r has area πr2(θ(t+∆t)− θ(t)),

so πr2θ′ is the derivative of the area swept through by the segment)

From (4):

r′′ − c2

r3
= −GM

r2
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2r′r′′ − 2r′c2r−3 = −GM
r2

2r′

((r′)2)′ + c2(r−2)′ = 2GM(r−1)′

Thus ∃C1, C2 such that

(r′)2 + c2r−2 = 2GMr−1 + C2

(r′)2 = C2
1 −
Å
c

r
− GM

c

ã2

Set 
c

r
− GM

c
= C1 cosβ(t)

r′ = C1 sinβ(t)

Taking the derivative of the first equation,

−cr
′

r2
= −r′β′(t) =⇒ β′(t) =

c

r2

This is saying β′(t) = θ′(t) (recall that r2θ′ = c), and we can WLOG assume θ(0) = β(0)

(just rotate the axes to change θ by a constant).

Therefore we can get

r =
l

1 + e cos θ
, e =

C1c

GM
, l =

c2

GM

Which means the locus is an ellipse (techiquely it can also be a parabola or hyperbola,

and you can see it makes sense too) with a focus on the origin (this is Kepler’s 1st law).

And the area of the ellipse T = πab
c

satisfies T 2 = π2a3

GM
, which proves Kepler’s 3rd law.

7.2 The length of curves and Brachistochrone problem

Definition 7.4. A curve is a map γ : [0, 1] → Rd. We say a curve is rectifiable if

sup
0=t0<t1<···<tn=1

n∑
i=1

|γ(ti)− γ(ti−1)| < +∞

The supremum is called the length of the curve L(γ).

If γ ∈ C1,

|γ(ti)− γ(ti−1)| =

Ã
d∑

j=1

(xj(ti)− xj(ti−1))2 = (ti − ti−1)

Ã
d∑

j=1

(x′j(ξji))
2

From the uniform continuity of x′j , we can prove
∑

|γ(ti)−γ(ti−1)| →
∫ 1

0
|γ′(t)|dt.

Theorem 7.5

If γ ∈ C1, then

L(γ) =

∫ 1

0

|γ′(t)|dt.
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Proof. The skectch are decribed above, the details are omitted (you might need mean value

theorem of integrals).

This induces the arc length parameter:

φ : [0, 1] → [0, L(γ)] with φ(t) =
∫ t

0
|γ′(x)|dx, obviously φ is increasing and C1, so by

implicit function theorem φ is a C1 homeomorphism.

If we consider the curve with a new parameter γ ◦ φ−1 : [0, L(γ)] → Rn (this is called

the arc length parameter).

dγ(φ−1(y))

dy
= γ′(φ−1(y))(φ−1)′(y) =

γ′(φ−1(y))

|γ′(φ−1(y))|
So in this parameter we always have |γ′| = 1.

Remark 7.6 — The continuity cannot grant theat the curve is rectifiable, and rectifiable

curve need not be continouous.

Definition 7.7. A real function F on [a, b] is called a bounded variation function, if its

total variation

TF (a, b) = sup
σ

n∑
j=1

|F (xj)− F (j−1)|

is finite. All such functions form a space BV ([a, b]).

Theorem 7.8

A curve γ = (x1, . . . , xn) is rectifiable if each of xi is a bounded variation function.

Example 7.9

Some examples of BV functions:

• If F is increasing and bounded, TF ([a, b]) = F (b)− F (b);

• If F is differentiable on [a, b] and F ′ is bounded, then TF ([a, b]) ≤ (b− a) supF ′;

• If F ′ is Riemann integrable, TF ([a, b]) =
∫ b

a
|F ′|dx.

We can divide the total variation into positive part and negative part:

PF (a, b) = sup
σ

n∑
j=1

(F (xj)− F (xj−1))+

NF (a, b) = sup
σ

n∑
j=1

(F (xj)− F (xj−1))−

where a+ = max a, 0, a− = −min a, 0.
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Lemma 7.10

If F ∈ BV ([a, b]), a ≤ x ≤ b, we have

F (x)− F (a) = PF (a, x)−NF (a, x), TF (a, b) = PF (a, b) +NF (a, b).

Proof. WLOG assume x = b.

By definition,

F (xj)− F (xj−1) = (F (xj)− F (xj−1))+ − (F (xj)− F (xj−1))−,

|F (xj)− F (xj−1)| = (F (xj)− F (xj−1))+ + (F (xj)− F (xj−1))−.

As we’ve proven in Darboux sums, refining the partition will make the sum larger. By

taking refinement of the partition we’re more or less done.

Theorem 7.11 (Jordan’s decomposition of BV functions)

A function F is bounded variation function iff it can be written as a difference between

two bounded increasing functions.

Proof. If F = F1 − F2 obviously F ∈ BV ([a, b]).

If F ∈ BV ([a, b]), let F1 = F (a) + PF (a, x), F2 = NF (a, x).

Remark 7.12 — BV ([a, b]) is an algebra and a Banach space with norm ∥F∥ = supF +

TF (a, b).

Let’s come to the problem of brachistochrone.

8 Lebesgue measure theory

8.1 Cantor set and σ-algebra

Definition 8.1 (Cantor set). Divide the interval [0, 1] equally into three intervals and remove

the one in the middle, we get two non-intersect closed setï
0,

1

3

ò
,

ï
2

3
, 1

ò
.

Apply the same process to these intervals, we get four sets:ï
0,

1

9

ò
,

ï
2

9
,
1

3

ò
,

ï
2

3
,
7

9

ò
,

ï
8

9
, 1

ò
.

Repeating this process, we get 2n intervals with length 3−n at the n-th step. Denote the

union of these sets by Fn, it’s clear Fn is a series of nested closed sets, the limit is known as

the Cantor set

C =
∞⋂

n=1

Fn = lim
n→∞

Fn.
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The Cantor set has the following properties:

• C is a nonempty closed set. (From the nested closed sets theorem)

• C doesn’t have inner points, i.e. C̊ = ∅.

Note that Fn consists of intervals of length 3−n, so any given interval (a, b) cannot be

contained in C.

• C is a complete set, i.e. C′ = C.

Because x ∈ C ⇐⇒ x ∈ [an, bn], we know an, bn ∈ C, so limn→∞ an = limn→∞ bn = x,

C doesn’t have isolated points.

• C is completely disconnected, i.e. ∀x, y ∈ C, ∃z /∈ C, x < z < y.

Because when n gets sufficiently large, x, y are in distinct intervals of length 3−n.

• C = {
∑∞

n=1
an

3n
| an = 0, 2}.

• card(C) = c = card(R), this follows from it’s a complete set. (Also follows from the

above expression)

• The intervals removed have a total length of

∞∑
n=1

2n

3n
= 1.

This means Cantor set has “length” zero.

Consider a map F : C → [0, 1] which shows card(C) = c:

x =
∞∑

n=1

an
3n

7→ F (x) =
∞∑

n=1

1
2
an

2n
, an ∈ {0, 2}.

We can see that F is surjective and increasing.

Moreover, note that for an interval (e, f) removed at the n-th step, we have

e =
n−1∑
k=1

ak
3k

+
∞∑

k=n+1

2

3k
, f =

n−1∑
k=1

ak
3k

+
2

3n
.

So by definition, F (e) = F (f), we can extend F to the interval (e, f) with F (x) = F (e),∀x ∈
(e, f).

Therefore we can extend F to [0, 1], this function is called the Cantor-Lebesgue func-

tion. Clearly F is continuous, and has derivative 0 on Cc. (because it’s constant on each

interval of [0, 1]\C)
At the point x ∈ C, we have

lim
n→∞

∑∞
k=n

1
2ak

2k∑∞
k=n

ak

3k

= +∞.

This shows that although F has derivative zero almost everywhere, but F (x) isn’t con-

stant and doesn’t satisfy the Fundamental theorem of Calculus.
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It’s also known as “demon’s staircase”, a continuous function consisting of infinitely

many staircase.

To measure the size of more complex sets, we allow the union of countable many closed

sets to be a Fσ set, and the intersection of countable many open sets to be a Gδ set. (F

comes from a French word, G comes from a German word)

We can also define Fσδ sets and Gδσ sets.

Example 8.2

The continuous point of a function f on Rn is a Gδ set.

In fact, it can be represented as

∞⋂
k=1

®
x : lim

δ→0
sup

y,z∈Bx(δ)

|f(y)− f(z)| < 1

k

´
.

and each set above is open.

Recall that a set E is dense if E = Rn, and nowhere dense if E̊ = ∅. The countable

union of nowhere dense sets are called meager set or first category set, and other sets

are second category sets.

Note that subsets of first category cannot be the entire set (Baire’s category theorem),

this can be used to prove some existence problem.

Example 8.3

Aussme that fk(x) ∈ C(Rn), limk→∞ fk(x) = f(x). Then the set of discontinuous points

of f is of first category, which shows f must have continuous points.

Proof. f discontinuous at point x ⇐⇒ exists an open interval I ⊂ R s.t. x ∈ f−1(I)\( ˚f−1(I)).

Now we prove f−1(I) is a Fσ set: Let {In} be the open intervals with rational center

and radius, we also require In ⊂ I. Then we have

f−1(I) = f−1

(⋃
n

In

)
= f−1

(⋃
n

In

)
=

⋃
n,m≥1

⋂
k≥m

f−1
k

(
In
)
.

The reasons are as follows:

For x ∈ f−1(I), exists In s.t. f(x) ∈ In. Because fk converges to f , fm(x) ∈ In for

sufficiently large m.

Conversely, if exists n, for all sufficiently large m, fm(x) ∈ In always holds, then from

convergence x ∈ f(In).

f−1(I) is a Fσ set =⇒ f−1(I)\( ˚f−1(I)) is of first category (it is a subset of a countable

union of boundaries of closed sets), from Baire’s theorem we deduce the discontinuous points

of f are of first category.

We define Baire-0 function to be continuous functions, and Baire-(n+1) function to be

the limit of Baire-n functions.
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Definition 8.4. We say a family Γ of subsets of X is a σ-algebra, if

• ∅ ∈ Γ;

• A ∈ Γ =⇒ Ac ∈ Γ;

• An ∈ Γ =⇒
⋃∞

n=1An ∈ Γ.

It’s clear σ-algebra is closed under countable intersections. In the sense of generated

groups/ideals/spaces, we define the smallest σ-algebra containing Σ to be the generated σ-

algebra Γ(Σ).

Let B denote the σ-algebra generated by all the open sets (called Borel σ-algebra), the

sets in B are called Borel sets.

Definition 8.5. An increasing sequence of subsets in X is

A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · ·

define limn→∞An =
⋃∞

n=1An.

Similarly a decreasing sequence is

B1 ⊃ B2 ⊃ · · · ⊃ Bn ⊃ · · ·

define limn→∞Bn =
⋂∞

n=1Bn.

In the same spirit we can define the superior limit and inferior limit for general sequences

of sets, namely

lim sup
k→∞

Ek :=
∞⋂
k=1

∞⋃
l=k

Ek, lim inf
k→∞

Ek :=
∞⋃
k=1

∞⋂
l=k

Ek.

8.2 Outer measure

We want to define a “measure” on a family of sets A to describe how large each set is,

and we want it to satisfy countable additivity. This requires A is closed under countable

unions. This leads us to σ-algebras.

Definition 8.6 (Measure spaces). If A is a σ-algebra on X, we say (X,A ) is a measurable

space. If there’s a non-negative function µ on A satisfies:

• µ(∅) = 0;

• For any pairwise disjoint sets Ai, we have

µ

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

Then we say the triple (X,A , µ) is a measure space.

Lebesguue measure is a measure space on X = Rn satisfying µ(I) = |I|, where I is a

bounded cuboid in Rn. In what follows we’ll give the construction of Lebesgue measure.

Let E be the set of all the finite unions of bounded cuboid, we call it the base set.
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There’s a natural function m such that m(I) = |I| which is finitely additive. From m

we can induce the outer measure m∗

m∗(E) = inf

{
∞∑
k=1

m(Ik), E ⊂
∞⋃
k=1

Ik, Ik ∈ E

}
.

The outer measure m∗ in Rn has the following properties:

• It’s non-negative;

• It’s monotone, i.e. m∗(A) ≤ m∗(B) for A ⊂ B;

• countable subadditivity: m∗ (
⋃∞

k=1Ek) ≤
∑∞

k=1m
∗(Ek);

• If d(E1, E2) > 0, then m∗(E1 ∪ E2) = m∗(E1) +m∗(E2);

• m∗(E + {x0}) = m∗(E), m∗(λE) = |λ|nm∗(E).

More generally, if a non-negative function satisfies the first three properties, we say it’s

an outer measure.

Proof of the third property. WLOG
∑
m∗(Ek) <∞, for any ε > 0, we can find Ik,i ∈ E such

that
∞∑
i=1

|Ik,i| < m∗(Ek) +
ε

2k
.

{Ik,i} is a cover of
⋃
Ek, hence

m∗

(
∞⋃
k=1

Ek

)
≤

∞∑
k,i=1

|Ik,i| =
∞∑
k=1

M∗(Ek) + ε.

Since ε can be arbitarily small, the conclusion follows.

Example 8.7

m∗(C) = 0.

Proof. C ⊂ Fn, hence

m∗(C) ≤ m∗(Fn) = 3−n2n → 0.

This induces a “distance” d∗(A,B) := m∗(A∆B), where ∆ is the symmetric difference.

We can check d∗ satisfies symmetry and triangle inequality, but d∗(A,B) = 0 cannot

imply A = B.

8.3 Measurable sets

Because of the sepciality of Eucildean space, measurable sets are defined to be the limit

set of open sets at first. But later in abstract measure theory, the measurable sets are defined

to satisfy Caratheodory condition, that is:
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Definition 8.8. We say a set E is measurable (Lebesgue measurable) if

m∗(T ) = m∗(E ∩ T ) +m∗(T ∩ Ec), ∀T ⊂ Rn.

Let U be the collection of all the measurable sets in Rn.

Example 8.9

If m∗(E) = 0, then E is measurable. We say such E is null. Because

m∗(E ∩ T ) +m∗(T ∩ Ec) = m∗(T ∩ Ec) ≤ m∗(T )

We say a measure space is complete if all the null sets are measurable.

From this fact we know card(U ) = 2c. It follows from all the subset of Cantor set C is

null, hence measurable. card(C) = c =⇒ card(U ) = 2c.

Proposition 8.10

U is a σ-algebra, and (Rn,U ,m∗) is a measure space.

Proof. It’s obvious that ∅ ∈ U , and E ∈ U =⇒ Ec ∈ U .

Now we need to prove the countable additivity.

First we prove it’s finitely additive.

m∗(T ) = m∗(T ∩ E1) +m∗(T ∩ Ec
1)

= m∗(T ∩ E1 ∩ E2) +m∗(T ∩ E1 ∩ Ec
2) +m∗(T ∩ Ec

1 ∩ E2) +m∗(T ∩ E1 ∩ Ec
2)

≥ m∗(T ∩ (E1 ∪ E2)) +m∗(T ∩ (E1 ∪ E2)
c) ≥ m∗(T )

Hence U is closed under unions and intersections.

In particular, if E1 ∩ E2 = ∅,

m∗(T ∩ (E1 ∪ E2)) = m∗(T ∩ (E1 ∪ E2) ∩ E1) +m∗(T ∩ (E1 ∪ E2) ∪ Ec
1)

= m∗(T ∪ E1) +m∗(T ∪ E2).

Now assume Ek measurable and pairwise disjoint. Let E be their union and Fk be the

union of first k sets.
m∗(T ) = m∗(T ∩ Fk) +m∗(T ∩ F c

k )

=
k∑

i=1

m∗(T ∩ Ei) +m∗(T ∩ F c
k )

≥
k∑

i=1

m∗(T ∩ Ei) +m∗(T ∩ Ec)

Taking the limit k → ∞:

m∗(T ) ≥
∞∑
i=1

m∗(T ∩ Ei) +m∗(T ∩ Ec) ≥ m∗(T ∩ E) +m∗(T ∩ Ec) ≥ m∗(T )
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which forces all the equality hold. (the middle inequality follows from countable subadditiv-

ity)

This implies E ∈ U , and

m∗(E) =
∞∑
i=1

m∗(E ∩ Ei) +m∗(E ∩ Ec) =
∞∑
i=1

m∗(Ei).

At last for general Ei’s (not necessarily disjoint), we have

∞⋃
i=1

Ei =
∞⋃
i=1

(
Ei\

i−1⋃
k=1

Ek

)
∈ U .

So we can restrict m∗ on U to get the Lebesgue measure, denoted by m. Thus

(Rn,U ,m) is the complete measure space by extending (E ,m∗).

As a corollary, Lebesgue measure satisfies monotone convergence theorem:

Theorem 8.11

For a monotone sequence {Ek}, we have

m
(
lim
k→∞

Ek

)
= lim

k→∞
m(Ek),

if {Ek} is decreasing we require m(Ek) is finite for some k.

Proof. Just some abstract nonsense:

If {Ek} is increasing,

m
(
lim
k→∞

Ek

)
= m

(
∞⋃
k=1

Ek

)

= m

(
∞⋃
k=1

(
Ek\

k−1⋃
i=1

Ei

))

=
∞∑
k=1

m

(
Ek\

k−1⋃
i=1

Ei

)
= lim

k→∞
m(Ek).

If {Ek} is decreasing, just take the complement sets. WLOG m(E1) is finite,

m
(
lim
k→∞

Ek

)
= m

(
∞⋂
k=1

Ek

)

= m(E1)−m

(
∞⋃
k=1

(E1\Ek)

)
= m(E1)− lim

k→∞
m(E1\Ek) = lim

k→∞
m(Ek).

For general sequences, we can consider their superior limit and inferior limit instead.
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Theorem 8.12 (Fatou’s lemma)

For any measurable sequence {Ek}, we have

m
(
lim inf
k→∞

Ek

)
≤ lim inf

k→∞
m(Ek), m

Å
lim sup
k→∞

Ek

ã
≥ lim sup

k→∞
m(Ek).

where in the second inequality we require m (
⋃∞

l=k El) is finite for some k.

Proof. By definition we have

m
(
lim inf
k→∞

Ek

)
= m

(
∞⋃
k=1

∞⋂
l=k

El

)
= lim

k→∞
m

(
∞⋂
l=k

El

)
≤ lim inf

k→∞
m(Ek).

Simlarly,

m

Å
lim sup
k→∞

Ek

ã
= m

(
∞⋂
k=1

∞⋃
l=k

El

)
= lim

k→∞
m

(
∞⋃
l=k

El

)
≥ lim sup

k→∞
m(Ek).

This lemma implies the following theorem:

Theorem 8.13 (Borel-Cantelli)

Let Ek be measurable sets, satisfying
∑∞

k=1m(Ek) <∞. We have

m(lim inf
k→∞

Ek) = m(lim sup
k→∞

Ek) = 0.

Proof. By Fatou’s lemma this is obvious.

Remark 8.14 — This theorem is a famous theorem in probability theory. Its inverse

needs stronger conditions to hold.

8.4 Properties of measurable sets

Earlier we proved that null sets are measurable, in this section we’ll dig deeper into

measurable sets, revealing its structure.
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Theorem 8.15

Measurable sets have following properties:

• The cuboid I is measurable. In particular, open sets and closed sets are measurable,

hence Borel sets are measurable;

• Give E ∈ U , for any ε > 0 there exists an open set G and a closed set F such

that:

F ⊂ E ⊂ G, m(G\F ) < ε.

In particular, we have

E = H\Z1 = K ∪ Z2,

where Z1, Z2 are null sets, H is Gδ set, K is Fσ set.

Proof. Let I be a bounded cuboid. ∀T ⊂ Rn, we need to prove

m∗(T ) = m ∗ (T ∩ I) +m∗(T ∩ Ic).

For all the covers {Ik} of T , {Ik ∩ I} is a cover of {T ∩ I}, {Ik ∩ Ic} can be divided to a

finite union of cuboids, so it’s a cover of T ∩ Ic. Hence

m∗(T ) + ε >
∑

|Ik| =
∑

|Ik ∩ I|+ |Ik ∩ Ic| ≤ m∗(T ∩ I) +m∗(T ∩ Ic).

This shows I is measurable.

Now for the second part.

WLOG m∗(E) < ∞ (otherwise write E as a countable union of bounded sets), we can

take a cover of open cuboids of E (otherwise extend each Ik a bit), by definition,

m(E) + ε >

∞∑
k=1

|Ik|.

So G =
⋃
Ik ⊃ E, G open and

m(G\E) < ε.

For closed set we consider Ec and apply the same arguments.

Then the Gδ set G =
⋂
Gk satisfies m(G\E) ≤ m(Gn) − m(E) ≤ 1

2n
,∀n ≤ 1. which

shows G\E is null.

Here H is called the equi-measure hull of E, and K the equi-measure kernel of E.

For general a set E, its equi-measure hull also exist (in the outer measure)

This theorem tells us that Borel sets and measurable sets only differs by null sets.

Example 8.16

There exists a second category set which is null.
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Proof. Let {rn} be a permutation of rational numbers in [0, 1], and In,k = (rn − 2−n−k, rn +

2−n−k).

Consider E =
⋂

k

⋃
n In,k. Clearly E is of measure zero.

Note that (
⋃

n In,k)
c is nowhere dense, so Ec is of first category, (by Baire’s theorem) E

is of second category.

Example 8.17

All the reals satisfying the following condition form null a set:

exists (pn, qn), qn > 1 pairwise distinct s.t.∣∣∣∣x− pn
qn

∣∣∣∣ ≤ q−3
n .

Theorem 8.18

Let E be a set whose measure is positive. For all 0 < λ < 1, exists cuboid I s.t.

λ|I| ≤ m(I ∩ E).

Proof. WLOG m(E) <∞, let {Ik} be a cover of E.

Assume that λ|I| > m(I ∩ E),∀I. We have

m(E) + ε >
∑
k

|Ik| > λ−1
∑
k

m(Ik ∩ E) > λ−1m(E),

which gives a contradiction.

Theorem 8.19 (Steinhaus)

Let E be a set of positive measure in Euclidean space, there exist δ > 0 s.t.

B(0, δ) ⊂ E − E.

Proof. WLOG 0 < m(E) <∞, from above we know there exists a cuboid I such that

λ|I| < m(I ∩ E).

Hence we may assume E ⊂ I, and

m(E) > λ|I|.

Suppose there exist xk → 0 such that xn /∈ E − E, which implies (E + xn) ∩ E = ∅.

m(E ∪ (E + xk)) = 2m(E)

Note that E ∪ (E + xk) ⊂ I ∪ (I + xk), so

m(E ∪ (E + xk)) < (1 + C(I)|xk|)|I| < (1 + C(I)|xk|)λ−1m(E),

47



数学分析笔记 2022秋 8.5 Non-measurable sets

where C(I) is a constant depending on I.

Therefore

2m(E) < (1 + C(I)|xk|)λ−1m(E)

Take λ→ 1 and xk → 0 we deduce a contradition.

Corollary 8.20

The Cauchy’s functional equation

f(x+ y) = f(x) + f(y),∀x, y ∈ R

If f is bounded on a set E of positive measure, then f(x) = cx.

Proof. First we know f(x) = cx for x ∈ Q.

From Steinhaus’s theorem, ∃δ > 0, [−δ, δ] ⊂ E − E. So f is also bounded on [−δ, δ].
For an irrational number α, ∃q ∈ Q such that |α− q| < δ,

|f(α)− qf(1)| < M

=⇒ |f(nα)− qnf(1)| < M, ∀n ∈ Z.

Compute

|f(x)− xf(1)| = 1

n
|f(nx)− nxf(1)|

≤ 1

n
(|f(nx)− qnf(1)|+ |nx− qn| · |f(1)|)

≤ 1

n
(M + δ|f(1)|).

Let n→ ∞ and we’re done.

8.5 Non-measurable sets

In this section we’ll construct a non-measurable set using Axiom of Choice.

Divide [0, 1] into equivalent classes:

[0, 1] =
⋃
Aα

where x ∼ y ⇐⇒ x− y ∈ Q.

From each class take an element xα(by Axiom of Choice), they form a Vitali set N .

Theorem 8.21

N is non-measurable.

Proof. Assume N ∈ U , let Nq := (N + q) ∩ [0, 1], ∀q ∈ Q. For distinct p, q ∈ Q,

Np ∩ Nq = ∅.
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So

1 = m([0, 1]) =
∑
q∈Q

m(Nq),

=⇒ N is not null.

Note that

m(Nq) ≥ m(N )− |q|,

Consider the rational numbers in (0, 1
2
m(N )), there are countable many such numbers,

each m(Nq) >
1
2
m(N ) > 0, their sum must be infinity, contradiction!

8.6 Measurable functions(TODO)

For convenience, we allow a function f on Rn take the value ±∞, but we require 0·∞ = 0.

Definition 8.22 (Measurable maps). We say a map f : (X,A) → (Y,B) between measure

spaces is measurable, if

f−1(B) ∈ A,∀B ∈ B.

This definition is similar to the continuous maps in topological spaces.

We’re going to study the measurable functions from Lebesgue measure space to measure

spaces on R. Till now we know four kinds of measure on R: the empty set, the power set,

Borel σ-algebra and Lebesgue σ-algebra.

Definition 8.23. Let E ⊂ Rn be a measurable set. We say a function f : E → R is

measurable, if the set

{x : f(x) > t}

is measurable for all t ∈ R.

Remark 8.24 — The open intervals (t,∞) can generate the entire Borel σ-algebra, so

this definition is actually saying f is a measurable map from E to (R,B). There are

sufficient reasons why we define measurable functions on Borel measurable space instead

of Lebesgue measurable space, we shall see them later.

Note that it’s equivalent to {x : f(x) ≤ t} or {x : f(x) < t} is measurable. Using the

idea of “generators of Borel σ-algebra”, we can get more equivalent statements:
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Proposition 8.25

The followings are equivalent:

1. f is a measurable function;

2. ∀t ∈ R, {x | f(x) > t} is measurable;

3. ∀t ∈ R, {x | f(x) ≤ t} is measurable;

4. ∀t ∈ R, {x | f(x) < t} is measurable;

5. {x | f(x) = +∞}, {x | f(x) = −∞} are measurable, and the pre-image of open(or

closed) sets are measurable;

6. {x | f(x) = +∞}, {x | f(x) = −∞} are measurable, and {x | f(x) ∈ [a, b)} is

measurable, ∀a < b ∈ R.

Proposition 8.26

Criteria for measurable functions:

• Continuous functions are measurable.

• f is finite-valued, measurable and Φ continuous, then Φ ◦ f is measurable. (f ◦ Φ
is not necessarily measurable)

• If fn’s are measurable, then sup fn, inf fn, lim sup
n→∞

fn, lim inf
n→∞

fn are all measurable.

In particular if fn converges, then lim
n→∞

fn is measurable.

• If f, g are measurable, then fk is measurable, f + g, fg are measurable when they

are well-defined (i.e. ∞±∞,∞/∞, 0/0 don’t occur).

Proof. Continuous function: the pre-image of open sets are open, hence measurable.

For open sets O, (Φ ◦ f)−1(O) = f−1 ◦ Φ−1(O) is measurable. So Φ ◦ f is measurable.

{sup
n
fn(x) > t} =

⋃
n

{fn(x) > t}

Thus supn fn measurable, similarly infn fn measurable, and lim sup
n→∞

fn = infk(supn>k fn),

lim inf
n→∞

= supk(infn>k fn) are measurable.

For fk, note that

{fk > t} =

{f > t
1
k }, 2 ∤ k

{f > t
1
k } ∪ {f < −t 1

k }, 2 | k, t ≥ 0

For f + g,

{f + g > t} =
⋃
r∈Q

{f > r} ∪ {g > t− r},
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and for fg,

fg =
(f + g)2 − (f − g)2

4
.

Since we assume 0 · ∞ = 0, so when two functions only differ on a null set, we can

somehow “ignore” this difference.

Remark 8.27 — Basically, in measure theory, we only care about things up to a differ-

ence of a null set, as most tools in measure theory will not tell these apart (for example,

the Lebesgue integral).

Definition 8.28. We say two measurable functions f, g are equal almost everywhere(or

equivalent), if f, g only differ on a null set, written as f(x) = g(x) a.e..

Observe that if f(x) = g(x) a.e. and f measurable, then g is also measurable.

We hope some simple functions are dense in measurable functions. (Just like step func-

tions or polynomials are dense in continuous functions).

Let χE be the indicator function of the set E. If an’s are constants, Rn’s are cuboid,

then we say
∑N

n=1 anχRn
is a step function. If we replace Rn with measurable sets, we say

this is a simple function. Obviously simple functions are measurable.

Theorem 8.29

For any non-negative function f(x), there exists a series of non-negative, increasing

simple functions φk(x) converges to f(x). (Written as φk(x) ↗ f(x))

Proof. Since simple functions are bounded, so we need to approximate f(x) with bounded

functions first:

Define

Fk(x) =


f(x), |x| < k, f(x) ≤ k;

k, |x| < k, f(x) > k;

0, |x| ≥ k.

Clearly Fk(x) is an increasing function series converging to f .

Now we approach Fk(x) using simple functions:

Let

El,j =

ß
x | l

2j
< Fk(x) ≤

l + 1

2j
, |x| < k

™
, ∀0 ≤ l < 2jk.

and define

Fk,j =
2jk−1∑
l=0

l

2j
χEl,j

.

Each Fk,k is a simple function, they are increasing and converge to f , as desired.
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Theorem 8.30

Let f be a measurable function, there exists simple functions φk(x) such that

|φk(x)| ≤ |φk+1|, lim
k→∞

φk(x) = f(x),∀x.

Proof. Decompose f into f = f+−f−, where f+(x) = max{0, f(x)}, f−(x) = −min{0, f(x)}.
From previous theorem, there exists φ+

k (x) ↗ f+(x), φ−
k (x) ↗ f−(x).

Hence

φk(x) := φ+
k (x)− φ−

k (x)

satisfies the conditions(note that φ+
k and φ−

k cannot both be positive at the same point).

Theorem 8.31

Let f be a measurable function, there exists step functions ψk(x) such that

lim
k→∞

ψk(x) = f(x) a.e.

Proof. From previous theorems we know f can be approached by simple functions, say

φk(x) =

Nk∑
l=1

ak,lχEk,l
.

For a fixed k, we may assume that Ek,l’s are pairwise disjoint and ak,l’s are disctinct.

(This is called the standard form of simple functions) Note that from the construction in

previous theorems, we can require Ek,l are of finite measure.

For each Ek,l, we can find finitely many disjoint cuboids, denote their union by Ik,l,ε,

such that

m (Ek,l∆Ik,l,ε) < 2ε

(where A∆B = A\B ∪B\A)
Now define step functions

ψk(x) =

Nk∑
l=1

ak,lχIk,l,ε
,

we have

{ψk(x) ̸= φk(x)} ⊂
Nk⋃
l=1

Ek,l∆Ik,l,ε =: Ak.

So once we set Nkε <
1
2k
, we have m(Ak) <

1
2k
,

∞∑
k=1

m(Ak) <∞,

by Borel-Cantelli Theorem (Theorem 8.13), we have

m

Å
lim sup
k→∞

Ak

ã
= 0.
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This shows that

{ψk(x) ̸→ f(x)} ⊂ {There exists infintely many k such that ψk(x) ̸= φk(x)}

is a null set, which means ψk(x) → f(x), a.e..

In contrast to continuous functions (which can be approached by step functions at every

point), measurable functions can only be approached almost everywhere. This is because you

can change the value of f on any null sets, while f remains measurable.

Next we’ll look at the convergency function of measurable functions. We already know

the limit is measurable as well, but we can dig much deeper:

Theorem 8.32 (Egorov)

If m(E) <∞, let fk be measurable functions on E, converges to f almost everywhere.

For any ε > 0, exists a closed set Fε ⊂ E, s.t. m(E\Fε) ≤ ε and fk uniformly

converges to f on Fε.

Proof. WLOG fk conveges to f after removing a null set.

En
k := {x ∈ E : |fj(x)− f(x)| < 1

n
,∀j > k}.

For a fixed n, En
k is increasing and its limit is E. Since m(E) finite, exists kn s.t.

m(E\En
kn
) < 2−n.

|fj(x)− f(x)| < 1

n
,∀j > k, x ∈ En

kn
.

Let N be sufficiently large s.t.
∑

n≥N 2−n < ε, define

Aε =
⋂
n≥N

En
kn
.

TODO

Theorem 8.33 (Lusin)

Let f be a finite measurable function on E, m(E) <∞, then for any ε > 0, there exists

a closed set Fε such that

Fε ⊂ E, m(E\Fε) ≤ ε

and f restricts to a continuous function on Fε.

Proof. TODO

Sketch of the proof: First we can find step functions fk → f, a.e.. Then we can find sets

Ek, fk continuous on E\Ek, and m(Ek) < 2−k.

By Egorov’s theorem, we can find A ε
3
s.t. fk uniformly converges on A ε

3
,

The above theorems induce the so-called Littlewood principles:
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• Measurable sets are almost finite unions of cuboids;

• Measurable functions are almost continuous;

• Convergent measurable functions are almost uniformly convergent.

8.7 Other convergence patterns(TODO)

Now we’ve seen “converge almost everywhere”(fk → f, a.e.). This is equivalent to

∀ε > 0,m

Å
lim sup
n→∞

{|fn(x)− f(x)| ≥ ε}
ã
= 0.

Since the points that don’t converge are in the supreme limit set of the above sets.

Egorov theorem induces another convergence: “converge almost uniformly”, written as

fk → f, a.u.. It is equivalent to

∀ε > 0, lim
n→∞

m

(
∞⋃

k=n

{|fk − f | ≥ ε}

)
= 0.

There is still another pattern of convergence: “converge in measure”. It’s defined as:

∀ε > 0, lim
k→∞

m ({|fk − f | ≥ ε}) = 0.

This is written as fk → f in measure, or fk
m−→ f .

The relations between these patterns of convergence:

• fk → f, a.u. =⇒ fk → f, a.e. and fk
m−→ f ;

• If m(E) <∞, by Egorov’s theorem, fk → f, a.e. =⇒ fk → f, a.u. =⇒ fk
m−→ f .

• If fk
m−→ f , we can find a subsequence fk′ s.t. fk′ → f, a.u. on E.

Remark 8.34 — For the proof of the last statement, see homework 12.12.

Example 8.35

TODO

9 Lebesgue Integration(TODO)

9.1 Integration of simple functions

Recall we’ve defined simple functions to be:

f =
N∑

k=1

akχEk
,

where ak are constants, Ek are measurable sets. Moreover we can require that ak distinct,

Ek disjoint.
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Define the integration ∫ N∑
k=1

akχEk
=

N∑
k=1

akm(Ek).

We can check this definition is well-defined, i.e. independent on the choices of ak and Ek.

properties

9.2 Integration of bounded functions on finite measurable sets

Let E be our finite measurable set.

Note that we can approximate f using simple functions φk. Define the integration∫
f := lim

k→∞

∫
φk.

To check it’s well-defined, let Ik =
∫
φk. ∀ε > 0, ∃Aε ⊂ E such that φk uniformly

converges on Aε, and m(E\Aε) < ε. Then exists N s.t.

|φn(x)− φm(x)| < ε, ∀n,m > N, x ∈ Aε.
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