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§1 Fourier analysis

§1.1 Fourier series

This concept comes from the heat equation in physics:

∂tu = ∂xxu.

To solve this equation, first we assume u(t, x) = A(t)B(x),

A′(t)B(x) = A(t)B′′(x) =⇒ A′(t)

A(t)
=
B′′(x)

B(x)
= c.

where c must be a constant. Hence we get A(t) = ect. From physics knowledge we deduce c < 0,

then we’ll get a solution u(t, x) = e−c2t(Ac cos(cx) +Bc sin(cx)). (We write −c2 for original c)
If we put some requirements on boundaries, like u(0, 0) = u(0, π) = 0, we’ll get Ac = 0, c ∈ Z.
Since the equation is linear, any linear combination of solutions are also solutions, thus the

general solution can be written as

u(t, x) =

+∞∑
m=0

e−m2tBm sin(mx).

Since u(0, x) can be measured in physics, we can solve all the Bm’s, this completely solves the
problem in physics.

This derives a problem in mathematics: Given a function f(x) on [0, 2π], is it always possible
to write f(x) as series:

f(x) =

+∞∑
m=0

(Am cosmx+Bm sinmx).

First we assume f(x) is written as this series, then∫ 2π

0

f(x) sin(kx) dx =

∞∑
k=0

Am

∫ 2π

0

cos(mx) sin(kx) dx+Bm

∫ 2π

0

sin(mx) sin(kx) dx = πBk.

This can be computed by tricks of trignometry functions.
Similarly, ∫ 2π

0

f(x) cos(kx) dx =

{
A0 · 2π, k = 0;

Ak · π, k ̸= 0.

To write these coefficients nicely, we’ll generalize it to complex fields:

Definition 1.1.1 (Fourier series). Let f be an integrable function on [0, 2π] or [−π, π], define the
Fourier series of f to be:

f̂(k) =
1

2π

∫ 2π

0

f(x)e−ikx dx, k ∈ Z.
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Thus we get

f(x) ∼
∑
k∈Z

f̂(k)eikx.

When f is periodic on [0, 2π] (meaning that f(0) = f(2π)), we can just view it as a periodic
function on R.

Fourier series write functions in the “frequency space” to reveal the hidden properties in the
oringinal space.

§1.2 Fourier series of smooth functions

Theorem 1.2.1 (The uniqueness of Fourier coefficients)

Let f be an integrable function on [0, 2π], and f̂(k) = 0, then f = 0, a.e..

Proof. Since polynomial functions can be approximated by trig functions uniformly, thus∫ 2π

0

f(x)P (x) dx = 0

for any polynomial P (x), hence f = 0, a.e..

This means that the operation of taking Fourier coefficient is injective.

Corollary 1.2.2

If f is continuous on [0, 2π], and
∑

k∈Z |f̂(k)| < +∞, then the partial sum SN (f)(x) =∑
|k|≤N f̂(k)eikx uniformly converges to f(x).

Proof. Let F (x) =
∑

k∈Z f̂(k)e
ikx. Then F is continuous and periodic,

F̂ (k) =
1

2π

∫ 2π

0

F (x)e−ikx dx

=
1

2π

∑
l∈Z

∫ 2π

0

f̂(l)eilxe−ikx dx

= f̂(k).

Therefore by continuity F (x) = f(x).

By Riemann-Lebesgue Lemma, f intergrable =⇒

lim
k→∞

∫ 2π

0

f(x)eikx dx = 0 =⇒ f̂(k) → 0.

Lemma 1.2.3

f ∈ C1 =⇒ |f̂(k)| ≤ C
1+|k| , f ∈ C2 =⇒ |f̂(x)| ≤ C

(1+|k|)2 .
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This implies that if f ∈ C2, SN (f)(x) uniformly converges to f(x), i.e. SN (f) ⇒ f .
When f is not so nice, since

SN (f)(x) =
∑

|k|≤N

f̂(k)eikx

=

N∑
k=−N

1

2π

∫ 2π

0

f(ξ)e−ikξ dξeikx

=
1

2π

∫ 2π

0

f(ξ)

N∑
k=−N

e−ik(x−ξ) dξ.

Let DN (x) =
∑N

k=−N eikx =
sin(N+ 1

2 )x

sin x
2

, (When x = 2kπ, DN (x) = 2N + 1) called the Dirichlet

kernel.
Then SN (f)(x) = 1

2πf ∗DN , where ∗ is the convolution.
Recall the results of approximations to the identity, if Kε is an approximation to the identity,

we have limε→0 f ∗Kε = f(x) for the Lebesgue point of f .
But unfortunately, DN is not an approximation to the identity:∫ 2π

0

1

2π
DN (x) dx =

1

2π

∑
|k|≤N

∫ 2π

0

eikx dx = 1.

Also |DN (x)| ≤ 2N + 1, but |DN (x)| ≤ AN−1|x|−2 doesn’t hold.
Hence we need to introduce a different tool: Fejer kernel.

§1.3 Fejer kernel

Consider the Cesaro sum

σN (f) :=
1

N
(S0(f) + · · ·+ SN−1(f)) =

∑N−1
k=0 f ∗Dk

N · 2π
.

This will leads to the Fejer kernel:

FN (x) =
1

N

N−1∑
k=0

sin(k + 1
2 )x

sin x
2

=
1

N

(
sin N

2 x

sin x
2

)2

.

(When x = 2kπ, FN (x) = N)
We can prove this Fejer kernel is indeed an approximation to the identity. Hence we get

f integrable =⇒ lim
ε→0

∥FN ∗ f − f∥L1 = 0,

and for Lebesgue point of f we have

lim
N→∞

σN (f)(x) = f(x).

Note that the condition of approximation to the identity is too strong, as it applies to every
L1 function. When f has more regularity, we can loosen some conditions of the kernel.

Definition 1.3.1 (Good kernels). LetKN (x) be continuous functions on [−π, π], KN (x) is a good
kernel if:

4
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•
∫ π

−π
KN (x) dx = 1;

• ∃M > 0 s.t. ∫ π

−π

|KN (x)|dx ≤M, ∀N ;

• ∀δ > 0,

lim
N→+∞

∫
δ≤|x|≤π

|KN (x)|dx = 0.

Theorem 1.3.2

Let KN be a good kernel, f is a bounded integrable function on [−π, π], if f is continuous at
x, we have

lim
N→+∞

f ∗KN (x) = f(x).

Proof. Let the bound of f be M1.

f ∗KN − f =

∫ π

−π

(f(x− y)− f(x))KN (y) dy

=

∫
|y|≤δ

|f(x− y)− f(x)||KN (y)|dy +
∫
|y|≥δ

2M1|KN (y)|dy → 0.

Corollary 1.3.3

Let f be a continuous periodic function on [0, 2π],

1

2π
f ∗ FN ⇒ f.

Proof. Since FN is a good kernel, f continuous =⇒ f uniformly continuous. Repeat the proof
above and we’ll get the result.

FN (x) =
1

N

N−1∑
k=0

∑
|l|≤k

eilx =
1

N

∑
|l|≤N−1

(N − |l|)eilx.

Thus

σN (f)(x) =
1

2π
(FN ∗ f)(x) = 1

2π

∑
|k|≤N−1

(
1− |k|

N

)
f̂(k)eikx.

Combining with our corrolary, we can approach any continuous function uniformly using trig
functions.

Now we assume f integrable and periodic on [−π, π], WLOG
∫ π

−π
f(x) dx = 0. (otherwise

minus a constant on f , only f̂(0) will change)
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Let F (x) =
∫ x

0
f(t) dt, F (x) is continuous and periodic on [0, 2π]. Consider the Fourier series

F̂ (0) =
1

2π

∫ 2π

0

F (x) dx =
1

2π

∫ 2π

0

∫ x

0

f(t) dtdx =
1

2π

∫ 2π

0

f(t)(2π − t) dt = − 1

2π

∫ 2π

0

tf(t) dt.

F̂ (k) =
1

2π

∫ 2π

0

F (x)e−ikx dx

=
1

2π

∫ 2π

0

∫ x

0

f(t) dt · e−ikx dx

=
1

2π

∫ 2π

0

f(t)

∫ 2π

t

e−ikx dx dt

=
1

2π

∫ 2π

0

f(t)
1− e−ikt

−ik
dt =

1

ik
f̂(k).

Now we have

1

2π
(FN ∗ F )(0) =

∑
|k|≤N−1

(
1− |k|

N

)
F̂ (k)

= − 1

2π

∫ 2π

0

tf(t) dt+
∑

1≤|k|≤N−1

(
1− |k|

N

)
f̂(k)

ik

= − 1

2π

∫ 2π

0

tf(t) dt+
∑

1≤|k|≤N−1

f̂(k)

ik
+

∑
1≤|k|≤N−1

i sgn(k)
f̂(k)

N
.

Since f̂(k) → 0 (by Riemann-Lebesgue), and 1
2π (FN ∗ F )(0) → F (0) = 0.

lim
N→+∞

∑
1≤|k|≤N

f̂(k)

k
=

i

2π

∫ 2π

0

tf(t) dt.

Thus we have a stronger condition on f̂(k).

Theorem 1.3.4 (Fatou)

Let

ak =


0, |k| ≤ 1,

1

2i log k
, k ≥ 2,

− 1

2i log |k|
, k ≤ −2.

Then there doesn’t exist an integrable function f on [0, 2π] s.t. f̂(k) = ak.

Proof. We’ve proven f̂(k) → 0 and
∑

k
f̂(k)
k converges, while {ak} does not satisfy these condition.

§1.4 The convergence of Fourier series

In this section we come to the main problem of Fourier series, i.e. when and how does the
convergence SN (f)(x) → f(x) holds?
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Lemma 1.4.1 (Localization lemma)

Let f be a integrable periodic function. For all x0 ∈ [−π, π], ∀δ > 0,

lim
N→+∞

∫
δ≤|y|≤π

DN (y)f(x− y) dy = 0.

Proof. ∫
|y|≥δ

sin(N + 1
2 )y

sin y
2

f(x0 − y) dy ≤ 1

sin δ
2

∫
|y|≥δ

sin

(
N +

1

2

)
yf(x0 − y) dy → 0.

Where the last step is by Riemann-Lebesgue Lemma.

Therefore

2πSN (f)(x) = DN ∗ f =

∫
|y|≤δ

DN (y)f(x− y) dy +

∫
|y|≥δ

DN (y)f(x− y) dy,

§1.4.1 Point-wise convergence

Theorem 1.4.2 (Dini)

f same as above, if there exists a constant c and δ > 0 s.t. at x0 we have∫ δ

0

|f(x0 − t) + f(x0 + t)− 2c|
t

dt < +∞.

Then limN→+∞ SN (f)(x0) = c.

Proof. By Riemann-Lebesgue,

SN (f)(x0)− c =
1

2π

∫ π

−π

DN (y)(f(x− y)− c) dy

=
1

2π

∫ δ

−δ

DN (y)(f(x− y)− c) dy +
1

2π

∫
|y|≥δ

DN (y)(f(x− y)− c) dy

=
1

2π

∫ δ

0

t sin(N + 1
2 )t

sin t
2

f(x− t) + f(x+ t)− 2c

t
dt+

1

2π

∫
|y|≥δ

DN (y)(f(x− y)− c) dy

→ 0.

Because the first term is the integral of a product of trig function and L1 function, the second
term approaches 0 by lemma.

There’s a counter example which is continuous function whose Fourier series doesn’t converge to
itself at one point. It’s known as du Bois-Reymond counter example.
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Example 1.4.3

Let f(x) =
∑

k
eikx

k .

∑
1≤|k|≤N

eikx

k
=

N∑
k=1

sin kx

k
=

cos x
2 − 1− cos(N+ 1

2x)−1

N −
∑N

k=2
cos(k− 1

2 )x−1

k(k−1)

2 sin x
2

=
−2 sin2 x

4 +
2 sin2(N

2 + 1
4 )x

N +
∑N

k=2
2 sin2( k

2−
1
4 )x

k(k−1)

2 sin x
2

.

When x ≥ δ, we can prove SN (f)(x) → f(x). When x < δ, since sin2 2k−1
4 x ≤

min{1, ( 2k−1
4 x)2},

N∑
k=2

2 sin2(k2 − 1
4 )x

k(k − 1)
≤
∑

k<x−1

( 2k−1
4 x)2

k(k − 1)
+
∑

k≥x−1

1

k(k − 1)
≤ cx2 · x−1 + cx ≤ 2cx.

Thus SN (f)(x) ≤M , where M is independent of x and N .

Another approach is to realize
∑

1≤|k|≤N
eikx

k as 1
2

∫ x

0
(DN (t)− 1) dt. (complicated)

Define wK(x) = e2iKx
∑

1≤|k|≤K
eikx

k . Let Kl = 3l
3

. Define

f(x) =

∞∑
l=1

l−2wKl
(x) =

∞∑
l=1

l−2
∑

1≤|k|≤Kl

ei(kx+2Klx)

k
.

We can check that f is continuous and periodic. Since Kl ≤ k + 2Kl ≤ 2Kl+1, this is a Fourier
series.

By the uniformly bounded property of wK(x) (proved in the example above),

S2Kl0
(f)(0) = l−2

0

−Kl0∑
k=−1

1

k
+

l0−1∑
l=1

l−2wKl
(0) = −l−2

0 lnKl0 +O(1) = l0 ln 3 +O(1) ̸→ f(0).

This counter example tells us that continuity can’t ensure the convergence of Fourier series.

Corollary 1.4.4

If there exists constants 0 < α ≤ 1, c > 0, δ > 0 and c+, c−, s.t.

|f(x0 + t)− c+|+ |f(x0 − t)− c−| ≤ c · tα,∀0 ≤ t < δ.

Then SN (f)(x0) → c++c−
2 .

In particular if f is periodic and Cα-Holder continuous (α = 1 corresponds to Lipschitz
continuous), then SN (f)(x) → f(x),∀x ∈ [0, 2π].

Proof. Just check the conditions of Dini’s theorem.
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Theorem 1.4.5

Let f be an integrable function, |f̂(k)| ≤ C
|k| , then at Lebesgue point x of f we have

SN (f)(x) → f(x).

Proof. Recall that σN (f)(x) → f(x) for Lebesgue points, and let bk = Sk − Sk−1, by a homework
problem in first semester, we only need to prove kbk is bounded. This follows immediately from
the condition |f̂(k)| ≤ C

|k| .

Now we move on to the BV functions. Since BV functions can be decomposed to increasing
functions, we only consider increasing functions f . WLOG f(0+) = 0, by localization lemma, (we
change (N + 1

2 ) to N for simplicity)∫ δ

0

sinNt

sin t
2

f(t) dt =

∫ δ

0

(
sinNt

sin t
2

− sinNt
t
2

)
f(t) dt+ 2

∫ δ

0

sinNt

t
f(t) dt.

By Riemann-Lebesgue lemma we can see the first term is at most C|f(δ)|.∫ δ

0

sinNt

t
f(t) dt =

∫ Nδ

0

sin t

t
f

(
t

N

)
dt.

Next we divide this integral to [2kπ, 2(k + 1)π]:∣∣∣∣∣
∫ 2(k+1)π

2kπ

sin t

t
f(

t

N
) dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ π

0

sin t

(
f( 2kπ+t

N )

2kπ + t
−
f( 2kπ+π+t

N )

2kπ + π + t

)
dt

∣∣∣∣∣
≤
∫ π

0

sin t

(
f( 2k+2

N π)− f( 2kπN )

(2k + 1)π
+

f( 2kπ+π
N 2π)

2kπ(2k + 2)π

)
dt

≤
∣∣∣∣f (2k + 2

N
π

)
− f

(
2kπ

N

)∣∣∣∣+ f(δ)
1

k(2k + 2)
.

§1.4.2 Uniform convergence

Theorem 1.4.6 (Jordan)

Let f be a real BV function on [0, 2π], then ∀x0 ∈ [0, 2π] we have

lim
N→+∞

SN (f)(x0) =
f(x0+) + f(x0−)

2
.

Moreover if f is continuous, this convergence is uniform.

Proof. We only prove the uniform convergence since the first part is nearly trivial by now.
Let g(t) = f(x+ t) + f(x− t)− 2f(x), then g is uniformly continuous on [0, 2π], and g is also

BV since the total variation is independent of x.
The computation is too complicated...

In fact this theorem can be proved similarly to Theorem 1.4.5, since we can prove f̂(k) ≤ C
|k| for

BV functions.

9
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§1.4.3 Absolute convergence

Theorem 1.4.7 (Bernstein)

Let f be a Cα continuous, α ∈ ( 12 , 1], then SN (f) is absolutely convergent, i.e.∑
k∈Z

|f̂(k)| < +∞.

Lemma 1.4.8 (Paseval’s equality)

Let f be a Cα (complex) function,

1

2π

∫ 2π

0

|f |2 dx =
∑
k∈Z

|f̂(k)|2.

Proof. Formally, since

f =
∑

f̂(k)eikx =⇒ |f |2 =
∑

f̂(k)f̂(l)ei(k−l)x,

thus ∫ 2π

0

|f |2 dx =
∑

f̂(k)f̂(l)

∫ 2π

0

ei(k−l)x dx = 2π
∑

|f̂(k)|2.

Now we come to the strict proof. We have SN (f) ⇒ f , thus∫ 2π

0

|SN (f)|2 dx = 2π
∑

|k|≤N

|f̂(k)|2,

which implies the result by taking the limit N → ∞.
In fact, this also holds for f ∈ L2 because∫ 2π

0

|f − SN (f)|2 dx =

∫ 2π

0

|f |2 dx− 2π
∑

|k|≤N

|f̂(k)|2.

Proof of Bernstein’s theorem. Let f(x) =
∑
f̂(k)eikx, then

f(x+ h)− f(x− h) =
∑

f̂(k)eikx · 2i sin kh.

By Paseval’s equality,∑
|f̂(k)|24 sin2 kh =

1

2π

∫ 2π

0

|f(x+ h)− f(x− h)|2 dx ≤ C|h|2α.

Let h = π
2p+1 , we have 4 sin2 kh ≥ 2, where 2p−1 ≤ k ≤ 2p.

=⇒
2p∑

k=2p−1

|f̂(k)| ≤ C|h|2α = C2−2pα.

10
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=⇒
2p∑

k=2p−1

|f̂(k)| ≤

(
2p∑

k=2p−1

|f̂(k)|2
) 1

2 (
2p−1

) 1
2 ≤ C · 2−pα2

p
2 = C · 2−(α− 1

2 )p.

Remark 1.4.9 — When α = 1
2 , there are counter examples.

Theorem 1.4.10 (Zygmurd)

Let f be a periodic Cα function, if f is BV then SN (f) is absolutely convergent.

Proof. Since

|f((n+ 1)h)− f((n− 1)h)|2 =
∣∣∣∑ f̂(k)eiknh2i sin kh

∣∣∣2
=
∑

|f̂(k)|24 sin2 kh+
∑
k ̸=l

f̂(k)f̂(l)ein(k−l)h sin kh sin lh.

Let h = 2π
N , and take the sum with respect to n: When k ̸= l,

∑N−1
n=0 e

in(k−l)h = 0. (roots of unity)
(When n | k − l, we need a different approach)

N−1∑
n=0

|f((n+ 1)h)− f((n− 1)h)|2 = N
∑
k

|f̂(k)|24 sin2 kh.

Hence ∑
k

|f̂(k)|24 sin2 kh ≤ 1

N
Chα

N−1∑
n=0

|f((n+ 1)h)− f((n− 1)h)| ≤ Chα+1∥f∥BV .

The rest is the same as the proof of Bernstein’s theorem.

§1.5 Hilbert spaces

People discovered that if we want the pointwise convergence of the Fourier series, we need to put
many requirements to the function. Therefore we wonder if we can proof some results for general
functions.

Recall that Parseval’s equality gives a map from L2 space to l2 = {{ak}k∈Z :
∑

|ak|2 < +∞}.
In fact this map is bijective by Cauchy’s law of convergence. This realizes L2 as a vector space of
countable dimensions, hence we introduce the general theory of Hilbert space.

Definition 1.5.1 (Hilbert space). A Hilbert space is a separable complete inner product space.
Recall that separable means it has a countable dense subset.

The space L2([0, 2π]) is a Hilbert space since we can assign the inner product

(f, g) =

∫ 2π

0

fg dx.

By Holder’s inequality, it’s easy to check L2([0, 2π]) is indeed a Hilbert space under this inner
product.

11
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Example 1.5.2

In Rd, the usual inner product gives the structure of Hilbert space.
Also L2(X) is a Hilbert space for any measure space X, with inner product (f, g) =∫

X
fg dµ.
Similarly the space l2 we’ve just defined is also a Hilbert space.

Let H be a Hilbert space. We say two elements f, g ∈ H is orthogonal if (f, g) = 0, denoted
by f ⊥ g. In this case we have ∥f + g∥2 = ∥f∥2 + ∥g∥2.

Recall the definitions of orthogonal and orthonormal basis in finite dimensional spaces in linear
algebra, we can also generalize them to Hilbert space:

Definition 1.5.3 (Orthonormal basis). If there is a countable set {ei} s.t. ∥ei∥ = 1, ei ⊥ ej and
the vector space spanned by {ei} are dense in H, then we say {ei} is an orthonormal basis of
H.

Example 1.5.4

In Rd, ek = (0, . . . , 1, . . . , 0) form an orthonormal space, where the 1 is in the k-th entry.
In l2, {ek}k∈Z is also an orthonormal basis. By applying Fourier transformation, we have

{ 1√
2π
eikx} is an orthonormal basis of L2([0, 2π]).

In L2(R), there is an orthonormal basis

{c−
1
2

k e−
1
2x

2

Hk(x), k ≥ 0},

where ck =
√
π2kk!, Hk(x) are Hermite polynomials:

Hk(x) = ex
2 dk

dxk
(e−x2

).

Theorem 1.5.5

Given an orthonormal system {ek} on a Hilbert space H, TFAE:

(1) {ek} is an orthonormal basis;

(2) If f ∈ H, f ⊥ ek =⇒ f = 0;

(3) For all f ∈ H, SN (f) → f (the convergence is on norm distance induced by the inner

product), where SN (f) =
∑N

i=1(f, ei)ei.

(4) For all f ∈ H, the Paseval equality holds:

∥f∥2 =

∞∑
i=1

|(f, ei)|2.

Proof. (1) =⇒ ∀ε > 0, ∃a1, . . . , ak ∈ R s.t.

∥f −
k∑

i=1

aiei∥ < ε.

12
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Hence

∥f∥2 +
k∑

i=1

a2i − 2

k∑
i=1

(f, ei)ai < ε.

Therefore f ⊥ ek =⇒ f = 0.
(2) =⇒ (3):

∥f − SN (f)∥2 = ∥f∥2 +
N∑
i=1

|(f, ei)|2 − 2

N∑
i=1

|(f, ei)|2 ≥ 0.

Hence ∥f∥2 ≥
∑∞

i=1 |(f, ei)|2.
Note that SN (f) is a Cauchy sequence (

∑n
i=m |(f, ei)|2 → 0), it must converge to some f̃ .

For any j, take N > j,

(f − f̃ , ej) = (f, ej)− (f̃ − SN (f), ej)− (SN (f), ej) = |(f̃ − SN (f), ej)| ≤ ∥f̃ − SN (f)∥∥ej∥.

This gives f = f̃ by (2).
(3) =⇒ (4) is trivial, and (4) =⇒ (1): ∀f ∈ H, SN (f) → f , therefore the linear combination

of {ek} is dense in H.

Theorem 1.5.6

All Hilbert spaces have orthonormal basis.

Proof. Since H is separable, there exists {fk} dense in H. WLOG {fk} is linearly independent.
We follow the process of Schmit orthogonalization: Let e1 = f1

∥f1∥ .

If fk+1 −
∑k

i=1(fk+1, ei) ̸= 0, let ek+1 be the normalized orthogonal vector.

Theorem 1.5.7 (Riesz)

Let T be a linear map from a Hilbert space H to R. If there exists a constant c s.t.

|T (x)| ≤ c|x|.

Then ∃x0 ∈ H s.t. T (x) = (x, x0).

Proof. Consider H0 = ker f . It’s a closed linear subspace of H since T is continuous.
There’s a unique decomposition x = x0 + x1 where x0 ∈ H0, x1 ⊥ H0: let u ∈ H s.t. T (u) = 1

and u ⊥ H0, x1 = T (x)u.
TODO

§1.6 Uniform distribution problem

Definition 1.6.1. Let {ξk} be a sequence on [0, 1), if ∀a, b ∈ [0, 1),

lim
n→∞

|{k ≤ n | ξk ∈ [a, b]}|
n

= b− a.

We say {ξk} is uniformly distributed on [0, 1).

13
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Example 1.6.2

Let {x} = x− [x], then for any q ∈ Q, {{kq}} is not uniformly distributed.

The sequence ξk = {( 1+
√
5

2 )k} is not uniformly distributed, because Fk+1 = ( 1+
√
5

2 )k +

( 1−
√
5

2 )k, so ξk converges to 0 as k → +∞.

Theorem 1.6.3 (Weyl uniform distribution law)

The followings are equivalent:

• {ξk} is uniformly distributed;

• For all Riemann integrable function f ,

lim
n→∞

1

n

n∑
k=1

f(ξk) =

∫ 1

0

f(x) dx.

• For all l ̸= 0 we have

lim
n→∞

(
1

n

n∑
k=1

e2πilξk

)
= 0.

Remark 1.6.4 — The generalization of this theorem is Birkhoff ergodic theorem.

Proof. It’s clear that (2) can imply the other two by taking f = χ[a,b] or f(x) = e2πilx.
(1) =⇒ (2) : For σ > 0, consider a partition x0 = 0 < x1 < · · · < xN = 1, |xi+1 − xi| < σ.
Define f+ and f− as

f+ =

N−1∑
k=0

sup
y∈[xk,xk+1]

f(y) · χ[xk,xk+1].

and f− changes the sup to inf.
We have f−(x) ≤ f(x) ≤ f+(x), thus by uniform distribution,

lim
n→∞

1

n

n∑
k=1

χ[a,b](ξk) = b− a =

∫ 1

0

χ[a,b](x) dx.

By linearity we have

lim
n→∞

1

n

n∑
k=1

f±(ξk) =

∫ 1

0

f±(x) dx→
∫ 1

0

f(x) dx.

(3) =⇒ (2) : Since e2πilx is surjective, and by conditions we have

1

n

n∑
k=1

e2πilξk → 0 =

∫ 1

0

e2πilx dx.

By linearity, the polynomials of trig functions also satisfies (2). Thus C2 functions satisfies (2).
(Its Fourier series uniformly converges to itself)

To prove (1), we only need to prove the step functions χ[a,b] satisfies (2), which can be approx-
imated by C2 functions by f− ≤ χ[a,b] ≤ f+.
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Example 1.6.5

Given an irrational number σ, then ξk = {kσ} is uniformly distributed on [0, 1).
We can prove it using Weyl’s law:

1

n

n∑
k=1

e2πilkσ =
1

n

e2πilσ − e2πil(n+1)σ

1− e2πilσ
→ 0.

Example 1.6.6

Let σ ∈ (0, 1), ξk = {akσ} for some a ̸= 0. {ξk} is uniformly distributed since (set b = 2πla)

Proof. By Weyl’s law,∣∣∣∣∣
n∑

k=1

e2πilak
σ

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
k=1

∫ k+1

k

eibk
σ

− eibx
σ

dx

∣∣∣∣∣+
∣∣∣∣∫ n+1

1

eibx
σ

dx

∣∣∣∣
Note that |eibkσ − eibx

σ | ≤ |b|(xσ − kσ) is bounded,

LHS ≤
n∑

k=1

∫ k+1

k

|b|(xσ − kσ) dx+

∣∣∣∣∫ n+1

1

deibx
σ

ibxσ−1σ

∣∣∣∣
≤

n∑
k=1

((k + 1)σ − kσ) +
1

|b|σ
| · · · |

≤ |b|(n+ 1)σ + c

(
(n+ 1)1−σ + 1 +

∫ n+1

1

(1− σ)x−σ dx

)
≤ |b|(n+ 1)σ + c(2(n+ 1)1−σ + 2) = o(n).

While ξk = {a ln k} is not uniformly distributed by similar computation.

§2 Fourier transformation on discrete sets

§2.1 Basic theory

Given a positive integer N , let Z(N) = {0, 1, . . . , n− 1} denote the residue class modulo N .
Let V be the space of complex value functions on Z(N), it’s an N -dimensional vector space

over C. We can define the inner product on V to be

(f, g) =
1

N

N−1∑
k=0

f(k)g(k).

In particular e
2πi
N kx is an orthonormal basis of V .

Therefore we define the Fourier transform to be

f(x) =
1

N

N−1∑
k=0

f̂(k)e
2πi
N kx, f̂(k) = N(f, e

2πi
N kx) =

N−1∑
k=0

f(x)e−
2πi
N kx

for functions f ∈ V .
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Note that the formula coincides with normal Fourier tranformations.
Futhermore, we can define the convolution on V ,

f ∗ g(x) =
N−1∑
k=0

f(x− k)g(k).

Similarly we have f̂ ∗ g(k) = f̂(k)ĝ(k).
The good thing of discreteness is that everything is finite, so we don’t need to check convergence

or commutativity.
In fact we have

sup
k

|f̂(k)ĝ(k)| = sup
k

|f̂ ∗ g(k)| = sup
k

(
N−1∑
x=0

(f ∗ g)(x)e− 2π
N ikx

)
≤

N−1∑
x=0

∣∣∣∣∣
N−1∑
y=0

f(x− y)g(y)

∣∣∣∣∣
which means that the “L∞” norm is less than or equal to the convolution’s “L1” norm.

Proposition 2.1.1

Convolution preserves inner product, i.e. (f̂ , ĝ) = N(f, g).

Proof. Just a bunch of computation.

In particular, we have Paseval’s equality:

Theorem 2.1.2

Let f ∈ V ,

1

N

N−1∑
k=0

|f̂(k)|2 = (f̂ , f̂) = N(f, f) =

N−1∑
k=0

|f(x)|2

§2.2 Roth three-term arithmetic sequences

Theorem 2.2.1 (Roth)

Let A ⊂ N, define the density of A to be

ρ(A) = lim sup
n→∞

|{x ≤ n|x ∈ A}|
n

.

If ρ(A) > 0, then there exists a three-term arithmetic sequence in A, i.e. ∃x, y, z ∈ A s.t.
x+ z = 2y.

The idea is to prove a following weaker statement:

Proposition 2.2.2

For ∀0 < δ < 1, if N > ee
50δ−1

, then for all A ⊂ {0, 1, . . . , N − 1}, if |A| ≥ δN , there exists a
three-term arithmetic sequence in A.
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Proof. Assume by contradiction, take the smallest N s.t. ∃0 < δ < 1, N > ee
50δ−1

and |A| ≥ δN
without arithmetic sequences.

Step 1. Let B = A ∩ [N3 ,
2N
3 ). We’ll prove |B| ≥ δ

4N .

Otherwise either |A ∩ [0, N3 ]| or |A ∩ [ 2N3 , N ]| is at least 3
8δN , WLOG |A ∩ [0, N3 ]|.

Therefore
|A ∩ [0, N3 ]|
|[0, N3 ]|

≥
3
8δN
N
3 + 1

≥ N

N + 3

9

8
δ ≥ 10

9
δ.

Since |[0, N3 ]| ≥
N
3 ≥ 1

3e
e50δ

−1

, it is larger than ee
50( 10

9
δ)−1

.
Step 2. If x, z ∈ B, x + y ≡ 2z(modN), then x + y = 2z. (x + y − 2z = 0, N,−N , a simple

inequality will yield the result)
Hence

0 =
∑
z∈B

∑
x∈B

∑
y∈A

1

N

N−1∑
k=0

e−
2π
N ik(x+y−2z)

=
1

N

N−1∑
k=0

∑
z∈B

e−
2π
N ik(−2z)

∑
x∈B

e−
2π
N ikx

∑
y∈A

e−
2π
N iky

=
1

N

N−1∑
k=0

χ̂B(−2k)χ̂B(k)χ̂A(k).

Note that χ̂A(0) =
∑
χA(x) = |A|, set c = max1≤k≤N−1 |χ̂A(k)|.

1

N
|B|2|A| =

∣∣∣∣∣ 1N
N−1∑
k=1

χ̂B(−2k)χ̂B(k)χ̂A(k)

∣∣∣∣∣
≤ 1

N

∣∣∣∣∣
N−1∑
k=1

χ̂B(−2k)χ̂B(k)

∣∣∣∣∣ c
≤ 1

N

N−1∑
k=1

(
|χ̂B(k)|2 +

1

4
|χ̂B(−2k)|2

)
c.

Now by Paseval’s equality 1
N

∑N−1
k=0 |χ̂B(k)|2 = |B| and

∑
|χ̂B(−2k)|2 ≤ 2

∑
|χ̂B(k)|,

|B|2|A| ≤ 3

2
c

N−1∑
k=0

|χ̂B(k)|2 =
3

2
N |B|c.

Therefore ∃k0 ̸= 0 s.t.

|χ̂A(k0)| ≥
2

3

1

N
|B||A| ≥ 2

3

1

N

δ

4
N · δN =

δ2

6
N.

Step 3. ∃0 < d ≤
√
N s.t. dk0 ≡ c0(modN), 0 ≤ c0 ≤

√
N .

Let l0 = min{[ N
6c0

], [N−1
2d ]}, consider

P = {0, d, 2d, · · · , l0d,N − d,N − 2d, · · · , N − l0d}.

We know |P | ≥ 2l0 + 1 ≥ 2[
√
N
6 ] + 1, c0l0 ≤ N

6 .
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Since |χ̂A(k0)| = | ̂(χA − c)(k0)| (k0 ̸= 0),

χ̂P (k0) =
∑
|l|≤l0

e−
2πi
N k0ld = 1 + 2

l0−1∑
l=0

cos

(
2k0π

N
ld

)
≥ l0 + 1.

We write

δ2

6
N(l0 + 1) ≤ | ̂(χA − c)(k0)χ̂P (k0)|

≤
N−1∑
x=0

∣∣∣∣∣
N−1∑
y=0

(χA(x− y)− c)χP (y)

∣∣∣∣∣
=

N−1∑
x=0

∣∣∣∣∣
N−1∑
y=0

(χA(y)χP (x− y)− c|P |)

∣∣∣∣∣ .
Let c = |A|

N ≥ δ, then

N−1∑
x=0

N−1∑
y=0

χA(y)χP (x− y)− cN |P | = |A||P | − cN |P | = 0.

There exists x0 such that

|A ∩ (x0 − P )| =
N−1∑
y=0

χA(y)χP (x0 − y) ≥ c|P |+ δ2

12
(l0 + 1).

Note that x0 − P is a subset of Z(N) consisting of at most 2 arithmetic sequences of common
difference d, say x0 − P = P1 ∪ P2, WLOG |P1| ≥ |P2|, P1 = {x0 − p ≥ 0}, P2 = {x0 − p < 0}.

• When |P2| ≤ δ2

48 |P |, note |P | = 2l0 + 1,

|A ∩ P1| ≥ δ|P |+ δ2

12
(l0 + 1)− δ2

48
|P | ≥

(
δ +

δ2

48

)
|P1|.

Since A ∩ P1 does not contain arithmetic sequences, and

|P1| ≥
47

48
|P | ≥ 47

48

(
2

[√
N

6

]
+ 1

)
≥ 5

16

√
N ≥ 5

16
e

1
2 e

50δ−1

> ee
50(δ+ δ2

48
)−1

.

We’ve find a smaller N ′ = |P1| and δ′ = δ + δ2

48 contradicting the assumption.

• |P1| ≥ |P2| ≥ δ2

48 |P |, ∃T (T = P1 or T = P2) s.t.

|A ∩ T | ≥
(
δ +

δ2

24

)
|T |.

By similar process in previous case, we can prove N ′ = |T | and δ′ = δ + δ2

24 suffices.
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§2.3 Fourier transform on finite abelian groups

The set {0, 1, . . . , N−1} can be viewed as a cyclic group of order N . In this section we’ll generalize
the idea to finite abelian groups, which can be viewed as Z-modules.

Let G be a finite abelian group, here we use the multiplication convention of group operation
and denote the identity as 1. The complex-valued functions defined on G form a vector space V
of dimension |G|.

Define the inner product

(f, g) =
1

|G|
∑
a∈G

f(a)g(a).

The next step is to find an orthonormal basis. In the case of cyclic groups, this was easy; In general
cases, recall that G is isomorphic to a direct product of cyclic groups, so we can do similar things.

However, we won’t proceed so here as this approach is somewhat complicated. Instead, we’ll
use the charaters of G.

Definition 2.3.1 (Characters). Let e : G→ S1 be a homomorphism, i.e.

e(ab) = e(a)e(b), ∀a, b ∈ G.

We say e is a character on G. The constant function 1 is called the trivial character.

Theorem 2.3.2

Let G be a finite abelian group, then all the characters on G form an orthonormal basis on
V . Moreover if e is a nontrivial character, we have∑

b∈G

e(b) = 0.

Proof. If e1 ̸= e2 are two characters, then there exists a ∈ G s.t.

e1(a)e2(a) ̸= 1.

(since e1(a)e1(a) = 1 for all a ∈ G)
Now

(e1, e2) =
1

|G|
∑
b∈G

e1(b)e2(b)

=
1

|G|
∑
b∈G

e1(ab)e2(ab)

=
1

|G|
∑
b∈G

e1(a)e2(a)e1(b)e2(b) = e1(a)e2(a)(e1, e2).

Thus the characters are pairwise orthogonal.
Hence it’s sufficient to prove the number of characters equals |G|. (Actually the characters

form a group Ĝ called the dual group of G.)
By the classification theorem of finite abelian groups, G = G1 ×G2 × · · · ×Gk, where Gi’s are

cyclic groups. Since we can prove Ẑn ≃ Zn and Ĝ×H ≃ Ĝ× Ĥ, it’s clear that |Ĝ| = |G|. (In fact
this is a homework problem of my algebra course)
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Now all the preparations are done, we can define the Fourier transformation:

f =
∑
e∈Ĝ

f̂(e)e, f̂(e) = (f, e) =
1

|G|
∑
b∈G

f(b)e(b).

Similarly, (f, g) =
∑

e∈Ĝ f̂(e)ĝ(e). This implies (f, f) =
∑

e∈Ĝ |f̂(e)|2.
The convolution is defined as

(f ∗ g)(a) = 1

|G|
∑
b∈Ĝ

f(b)g(ab−1).

The goal of developing Fourier transformation on finite abelian groups is to prove the famous
Dirichlet’s theorem, which is often used in high school math olympiads.

Theorem 2.3.3 (Dirichlet’s theroem)

Let q, l be two coprime integers. Then the arithmetic sequence {l+nq}∞n=1 contains infinitely
many primes.

The proof is very long, so sometimes we’ll skip some of the computational details.
Consider the finite abelian group

G = {1 ≤ n < q | gcd(n, q) = 1} = Z×
q .

For all e ∈ Ĝ, we can extend e to Z periodically, namely

χ(m) =

{
e(n), n ≡ m(modq)

0, otherwise.

We call this χ Dirichlet character, satisfying χ(mn) = χ(m)χ(n).
Define the l-identicator δl(n) = χ{n:q|n−l}. Apply the Fourier transform on δl,

δl(n) =
∑
e∈Ĝ

1

|G|
∑
a∈Ĝ

δl(a)e(a)e(n) =
1

|G|
∑
e∈Ĝ

e(l)e(n), ∀n ∈ G.

Thus

δl(n) =
1

|G|
∑
χ∈Ĝ

χ(l)χ(n), ∀n ∈ Z.

For s > 1 and p prime,

|G|
∑

p≡l( mod q)

1

ps
= |G|

∑
p

δl(p)

p
=
∑
p

∑
χ∈Ĝ

χ(l)χ(p)

ps
=
∑
χ∈Ĝ

χ(l)
∑
p

χ(p)

ps
.

Here the sum
∑

p is taken over all primes not dividing q. By putting the trivial character outside
the sum, we get ∑

p

1

ps
+

∑
χ∈Ĝ,χ ̸=1

χ(l)
∑
p

χ(p)

ps
.

Now we’ll prove two things:
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•
∑

1
ps → +∞ as s→ 1.

• For nontrivial character χ,
∑

p
χ(p)
ps is finite.

These two things will imply
∑

p≡l( mod q)
1
ps → +∞, which is sufficient to prove Dirichlet’s theorem.

Lemma 2.3.4

lim
s→1+

∑
p

1

ps
= +∞.

Proof. By Euler’s formula, for s > 1,

ζ(s) :=

∞∑
n=1

1

ns
=
∏
p

1

1− p−s
=
∏
p

( ∞∑
k=0

p−ks

)
.

Taking logarithm on both sides,

ln ζ(s) = −
∑
p

ln(1− p−s) =
∑
p

p−s +
∑
p

p−2s

2
+ · · ·

Since for k ≥ 2, ∑
p

p−ks

k
≤ 1

k

∑
n≥2

n−ks ≤ C

k
21−ks.

But since ζ(s) → ∞ as s→ 1+,
∑

p p
−s → +∞.

Remark 2.3.5 — This implies
∑

p
1
p = +∞, which is an analytic proof of infinitely many

primes.

The second step is much harder. For character χ, define L function

L(s, χ) =
∞∑

n=1

χ(n)

ns
.

Since for Dirichlet character χ, |χ| ≤ 1, so L(s, χ) is convergent.
The computation below may not be strict, they just provide a perspective.
By Euler’s formula,

L(s, χ) =
∏
p

1

1− χ(p)p−s
.

lnL(s, χ) = −
∑

ln(1− χ(p)p−s) ≈
∑ χ(p)

ps

and we need to prove it is bounded as s→ 1+.
Note that

q∑
n=1

χ(n) =
∑
n∈G

e(n) = 0 =⇒

∣∣∣∣∣
m∑

n=1

χ(n)

∣∣∣∣∣ < M, ∀m ∈ Z.

Thus by Abel’s criterion L(s, χ) is convergent for all s > 0.
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Theorem 2.3.6

Let χ be a nontrivial character, L(1, χ) ̸= 0.

We’ll prove this later. As for now, we assume it is true.
We take the s derivative of L(s, χ),

L′(s, χ) =

∞∑
n=1

χ(n)

ns
lnn.

We need to check RHS is uniformly convergent for s ∈ [δ, 2], ∀δ > 0, so that the equality holds.

|L(s, χ)− 1| =

∣∣∣∣∣∣
∞∑

n=2

(
1

ns
− 1

(n+ 1)s

)∑
l≤n

χ(l)

∣∣∣∣∣∣ ≤M2−s.

Similarly we can prove |L′(s, χ)| ≤M2−s.
Next we’re going to explain why we’re able to take logarithm. We can define

lnL(s, χ) = −
∫ +∞

s

L′(t, χ)

L(t, χ)
dt.

When t > 1, L(t, χ) ̸= 0. Now we’ll check elnL(s,χ) = L(s, χ). This follows by taking derivatives.
When s→ ∞, they clearly equals to each other.

TODO

Proof of Theorem 2.3.6. TODO

§3 Fourier transformation on Rn

Recall that Fourier transform is to express a function by a linear combination of orthonormal basis
of a Hilbert space (like L2([0, 2π])).

In Rn, when function f has a compact support,

f̂(ξ) =

∫
K

f(x)e−2πixξ dx.

Thus by taking K to the limit, we’ll get Fourier transformation on Rn.

Definition 3.0.1. For f ∈ L1(Rn), define

F(f)(ξ) := f̂(ξ) =

∫
Rn

f(x)e−2πixξ dx.

The number ξ is called the frequency, note the difference that ξ is continuous instead of discrete.
Also we have the inverse transformation,

F−1(f)(x) :=
∨
f(x) =

∫
Rn

f(ξ)e2πixξ dξ.

Observe that

|f̂(ξ)| ≤
∫
Rn

|f(x)|dx = ∥f∥L1 .
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Theorem 3.0.2 (Riemann-Lebesgue lemma)

For f ∈ L1,
lim

|ξ|→+∞
|f̂(ξ)| = 0.

Proof. Take fk → f in L1 s.t. fk has compact support.

Similarly for convolution we have

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

Since f, g ∈ L1, their convolution is also in L1, thus by Fubini’s theorem it’s the same as be-
fore.

Remark 3.0.3 — Recall that we’ve proved there doesn’t exist a function e s.t. e ∗ f = f for
all f . Here we can use Fourier transform to give a simple proof: e ∗ f = f =⇒ ê = 1, which
contradicts with Riemann-Lebesgue lemma.

Note that f̂ is not necessarily in L1 space. If we look at the differential properties of f̂ ,

• F(τx0
f)(ξ) = e2πix0ξ f̂(ξ), where τx0

f = f(x+ x0).

• F(Dλf) = |λ|−dDλ−1(F(f)), where Dλf = f(λx).

• More generally, let A : Rn → Rn be a nondegenerate linear transformation,

F(f ◦A)(ξ) = |detA|−1f̂((A−1)tξ)

• ∂̂kφ(ξ) = 2πiξkφ̂(ξ). This can be proved by integration by parts.

• ̂(−2πixkφ)(ξ) = ∂ξk φ̂(ξ). This implies that f ∈ C∞
0 (Rn) =⇒ f̂ ∈ C∞(Rn).

• The smooth properties of physical space is equivalent to the attenuation properties of fre-
quency space.

The downside of Fourier transform is that whenever f ∈ C∞
0 , we must have f̂ /∈ C∞

0 .

Remark 3.0.4 — The proof of this fact requires knowledge of complex analysis. Let f̂(z) =∫
f(x)e−2πixz dx which is complex analytic, f̂ ∈ C∞

0 (R) means it is zero on both ends of the

real axis, so by maximal principle, f̂ must be zero on the whole complex plane.

Therefore we need to introduce a new function space:

§3.1 Schwartz space

Definition 3.1.1. If f ∈ C∞ satisfies

sup
x∈Rn

∣∣∣∣∣xα
(
∂

∂x

)β

f(x)

∣∣∣∣∣ < +∞, ∀α, β,

then we say f ∈ S(Rn).

If f ∈ S(Rn), f̂ ∈ S(Rn) as well.
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Proposition 3.1.2

Let f, g ∈ S(Rn), we have ∫
Rn

f̂(ξ)g(ξ) dξ =

∫
Rn

f(x)ĝ(x) dx.

Proof. ∫
Rn

∫
Rn

f(x)e−2πixξ dxg(ξ) dξ

=

∫
Rn

f(x)

(∫
Rn

g(ξ)e−2πixξ dξ

)
dx

=

∫
Rn

f(x)ĝ(x) dx.

Theorem 3.1.3 (Fourier transform of Gaussian distribution)

Let g(x) = e−π|x|2 on Rn, we have

F(g)(ξ) = g(ξ) = e−π|ξ|2 .

Proof. The one-dimensional case is easy to proof using complex analysis.
Let G(ξ) = eπξ

2

ĝ(ξ) on R. Then G(0) = ĝ(0) =
∫
R g(x) dx = 1.

G′(ξ) = eπξ
2

(2πξ)ĝ(ξ)− eπξ
2

i

∫
R
e−2πixξ(−2πixξ)g(ξ) = 0.

TODO

Theorem 3.1.4

Let f ∈ S(Rn), then F−1(f̂) = f .

Proof. Note that here we can’t simply apply Fubini’s theorem as the function may not be integrable.
Alternatively, we’ll use Gaussian distribution to approach f .

For ε > 0, define gε(x) = ε−dg(ε−1x). Where g(x) = e−π|x|2 . Hence

F(gε)(ξ) = ε−d(ε−1)−dĝ(εξ) = g(εξ).

F(g(ε·))(x) = ε−dĝ(ε−1x) = gε(x).

We have gε is an approximation to identity,

lim
ε→0

∥f ∗ gε − f∥L1 = 0, lim
ε→0

(f ∗ gε)(x) = f(x).

Therefore for function f ∗ gε,∫
Rn

F(f ∗ gε)(ξ) dξ =
∫
Rn

f(x)gε(x) dx = (f ∗ gε)(0)

TODO
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Theorem 3.1.5 (Plancherel’s formula)

Let f ∈ S(Rn), then ∥f∥L2 = ∥f̂∥L2 .

Proof. Let g(x) = f̂(x) =
∫
Rn f(ξ)e

2πixξ dξ = F−1(f)(ξ). We have∫
Rn

f̂g dx =

∫
Rn

fĝ dx =

∫
Rn

fFF−1(f) dx = ∥f∥2L2 .

Theorem 3.1.6

F4 = id.

Proof. Since

F(−ξ) = F−1(f)(ξ) =

∫
Rn

f(x)e−2πix(−ξ),

we have F2(f)(−ξ) = f(ξ), hence F4(f)(ξ) = f(ξ).

Note that F : S → S is a linear map, we can talk about the eigenvalues of F , by F4 = id we
know the eigenvalues can only be ±1 or ±i.

Theorem 3.1.7 (Poisson summation formula)

Let f ∈ S(R), we have
+∞∑

n=−∞
f(x+ n) =

+∞∑
n=−∞

f̂(n)e2πinx.

In paricular when x = 0 we get
∑
f(n) =

∑
f̂(n).

Proof. Let F (x) =
∑+∞

n=−∞ f(x+ n) is a periodic function, hence F (x) =
∑+∞

n=−∞ F̂ (n)e2πinx.
Note that

F̂ (n) =

∫ 1

0

F (x)e−2πinx dx

=

∫ 1

0

+∞∑
k=−∞

f(x+ k)e−2πinx dx = f̂(n).

Theorem 3.1.8 (Heisenberg uncertainty principle)

Let f ∈ S(R), and ∥f∥L2 = 1.

4π∥xf∥L2 · ∥ξf̂(ξ)∥L2 ≥ 1.

The equality holds iff f = Ae−Bx2

, B > 0, A2 =
√
2Bπ−1. More generally we have

4π∥(x− x0)f∥L2 · ∥(ξ − ξ0)f̂(ξ)∥L2 ≥ 1.

25



Analysis III 3 FOURIER TRANSFORMATION ON Rn

Proof. Need to show ∫
R
x2f2 dx

∫
R
ξ2|f̂ |2 dξ ≥ 1

16π2
.

Write ∫
R
ξ2|f̂ |2 dξ = 1

4π2

∫
R
|(̂f ′)(ξ)|2 dξ

=
1

4π2

∫
R
|f ′|2(x) dx.

Where the last equality is by Plancherel’s formula. The first equality is by

f̂ ′(ξ) =

∫
f ′(x)e−2πixξ dx = 2πξ

∫
f(x)e−2πixξ dx = 2πξf̂(ξ).

Now by Cauchy-Schwarz inequality,

LHS ≥ 1

16π2

(∫
R
x(f2)′ dx

)2

=
1

16π2
.

The equality holds when xf = −2Bf ′, this gives the desired result.

§3.2 Radon transformation

The Fourier transformation has applications in medicine like CT, MR. The mathematics behind
it is “Fourier transformation” onto a plane.

In R3, let ω ∈ S2 be a unit vector, t ∈ R. Define the plane

Pt,ω = {x ∈ R3 | x · ω = t}.

Essentially t and ω is the distance and direction of the plane wrt the origin.

Definition 3.2.1. Let f ∈ S(R3), define the Radon transformation

R(f)(t, ω) =

∫
Pt,ω

f dx.

i.e. the integral of f on a plane.

Fix ω, we can take e1, e2 ∈ R3 s.t. {ω, e1, e2} forms an orthonormal basis. Then∫
Pt,ω

f dx =

∫
R2

f(tω + u1e1 + u2e2) du1 du2.

Radon transformation has some relations with Fourier transformation.

Theorem 3.2.2 (Central Slice Theorem)

Let r ∈ R, ω ∈ S2.

f̂(rω) =

∫
R
R(f)(t, ω)e−2πitr dt.
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Proof. ∫
R
R(f)(t, ω)e−2πitr dt =

∫
R

∫
R2

f(tω + u1e1 + u2e2) du1 du2e
−2πitr dt

=

∫
R

∫
R2

f(tω + u1e1 + u2e2)e
−2πi(tω+u1e1+u2e2)·rω dtdu1 du2

=

∫
R3

f(x)e−2πix·rω dx.

Where the last equality is a substitution x = tω + u1e1 + u2e2.

Now we hope to rebuild f using the information of R(f). Since

f(x) =

∫
R3

f̂(ξ)e2πix·ξ dξ

=
1

2

∫ +∞

−∞

∫
S2

f̂(rω)e2πix·rωr2 dr dω

=
1

2

∫ +∞

−∞

∫
S2

∫
R
R(f)(t, ω)e−2πitrr2 dt · e2πix·rω dr dω.

Note that by Fourier transformation of derivatives,∫
R
R(f)(t, ω)e−2πitrr2 dt = − 1

4π2
Ft(∂

2
tR(f))(r, ω)

Therefore

f(x) = − 1

8π2

∫
S2

∂2tR(f)(x · ω, ω) dω.

By an inverse Fourier transformation. This formula is useful in application since it’s easy to
compute.

§4 Sobolev space

Recall that for Ω ⊂ Rn, if m(Ω) < +∞, we have Lp(Ω) ⊂ Lq(Ω) for p ≥ q. We have a sequence of
function spaces,

L1 ⊇ L2 ⊇ · · · ⊇ L∞ ⊇ C0 ⊇ · · · ⊇ C∞.

This gives us the insight that the more derivatives the function has, or the integral of higher
power exists, the better properties it has. Sobolev’s theorem reveals some “commutativity” of this
derivatives and integrals.

Remark 4.0.1 — In this section we won’t state or prove everything strictly, since we didn’t
introduce the distribution, we have to state everything in the language of classical theory.

§4.1 Sobolev space

Let Ω ⊂ Rn be an open set. For 1 ≤ p <∞, recall that

Lp(Ω) =

{
f :

(∫
Ω

|f |p dx
) 1

p

< +∞

}
.
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and the norm

∥f∥Lp =

(∫
Ω

|f |p dx
) 1

p

.

When p = +∞,
∥f∥L∞ = inf{M : |{|f | ≥M}| = 0}.

We know that Lp(Ω) is a separable Banach space for 1 ≤ p <∞, while L∞(Ω) is not separable.
Now we’re adding the informations of derivatives.

Definition 4.1.1 (Sobolev space). First we define the norm

∥f∥Wk,p =

∑
|α|≤k

∫
Ω

|∂αf |p dx

 1
p

.

As usual we would naturally define W k,p as the functions with finite norm. Clearly Ck ⊂ W k,p.
However, if we do so it’s hard to prove the space is complete, and we don’t know what the other
functions look like.

Note that if φ ∈ C∞
0 , by integration by parts,∫

∂αfφdx = (−1)α
∫
f∂αφdx.

Definition 4.1.2 (Weak derivatives). Let f ∈ Lp(Ω), for all φ ∈ C∞
0 we define ∂αf to be a linear

operator

∂αf(φ) := (−1)α
∫
Ω

f∂αφdx =

∫
Ω

∂αfφdx.

In some cases, we can realize ∂αf as a function s.t. the latter equality holds, i.e. realize this linear
operator as an inner product.

Therefore we’ll use the weak derivatives for the definition of Sobolev space, and denoteW k,p
0 (Ω)

as the completion of C∞
0 under the W k,p norm. (This is to say ∂αf exists and in Lp(Ω), moreover

∂αf |∂Ω = 0.)

When p = 2, we also write W k,2 = Hk, and W k,2
0 = Hk

0 .
By Plancheral’s equality,∑

|α|=k

∥∂αf∥2L2 =
∑
|α|=k

∥∂̂αf∥2L2 =
∑
|α|=k

∥(2πξi)αf̂∥2L2 = (2π)k
∑
|α|=k

∥|ξ|kf̂∥2L2 .

So

∥f∥2Hk =
∑
|α|≤k

∥∂αf∥2L2 =

∫
(1 + |ξ|2 + · · ·+ |ξ|2k)|f̂ |2 dξ ≈ ∥(1 + |ξ|2) k

2 f̂∥2L2 .

Therefore we can define Hs space for s ∈ R as

∥f∥Hs = ∥(1 + |ξ|2) s
2 f̂∥L2 .

We also write Ḣs, the homogenous space as

∥f∥Ḣs = ∥|ξ|sf̂∥L2 .

The space Hs is a complete Banach space, this is essentially from the completeness of L2. We
can think of Hs(Ω) as the restriction of Hs function on Ω s.t. and f |Ω, . . . , ∂[s]f |Ω = 0. (or more
generally if Ω is not so good, the completion of C∞

0 (Ω) function on Hs norm)
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Remark 4.1.3 — If ∂Ω is a C1 manifold, then the restriction definition coincides with the
original definition.

Note that H0 = L2 and Hs′ ⊂ Hs for s′ ≥ s.

Theorem 4.1.4 (Sobolev embedding of Hs)

When s ≥ n
2 , H

s(Rn) can be continuously embedded into L∞(Rn), i.e. ∃C independent of f
s.t.

∥f∥L∞ ≤ C∥f∥Hs , ∀f ∈ Hs.

Moreover, if s− n
2 is not an integer,

∥f∥
C[s−

n
2 ],{s−n

2 } ≤ C∥f∥Ḣs ,∀f ∈ Ḣs(Rn)

Proof. WLOG 0 < s− n
2 < 1. If |x− y| ≤ 1, by Fourier transformation,

|f(x)− f(y)| ≤
∫
Rn

|f̂(ξ)||e2πi(x−y)ξ − 1|dξ

≤
(∫

Rn

|f̂(ξ)||ξ|2s dξ
) 1

2
(∫

|ξ|−2s|e2πi(x−y)ξ − 1|2 dξ
) 1

2

= ∥f̂∥Ḣs · 2
(∫

|ξ|−2s sin2 π(x− y)ξ dξ

) 1
2

.

Note that the integral can be estimated as∫
|ξ|>δ

|ξ|−2s dξ +

∫
|ξ|≤δ

|ξ|−2sπ2|x− y|2|ξ|2 dξ ≤ δ−2s+n + |x− y|2δ2−2s+n = |x− y|2s−n.

Where we take δ = |x− y|−1.

Here we take a little time to review.

• The space W k,p consists of functions whose weak derivatives ∂αf are in Lp for all α ≤ k.

• The norm is defined as

∥f∥Wk,p(Ω) =

 ∑
0≤α≤k

∫
Ω

|∂αf |p dx

 1
p

• The space W k,p(Ω) is a Banach space, this is derived from the completeness of Lp(Ω) and
the definition of weak derivatives.

• W k,p
0 (Ω) is the completion of C∞

0 (Ω) functions under the W k,p(Ω) norm.

If ∂Ω ∈ Ck (i.e. a Ck manifold), then f ∈W k,p
0 ⇐⇒ ∂αf |∂Ω = 0, for all α ≤ k − 1.
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Proposition 4.1.5

The smooth functions C∞(Ω) is dense in W k,p(Ω).

Sketch of proof. When Ω = Rn, this is easy, since we can take an approximation to identity Kϵ,
and f ∗Kϵ → f .

When Ω is not Rn, we can also define convolution on Ω ⊂ Rn as follows:
First note that if supp f ⊂ Ωϵ = {x ∈ Ω : d(x, ∂Ω) > ϵ}, then f ∗Kϵ is a function on Ω.
Therefore if we take a unit decompostion φk, fφk supports on a compact subset of Ω, hence

it’s at least ϵ away from ∂Ω.
Thus we can define fφk∗Kϵk for each k, and when ϵk → 0 uniformly,

∑
k fφk∗Kϵ →

∑
k fφk =

f .

§4.1.1 Extensions

Next we discuss the extension of f . Note that if f ∈ W k,p(Rn), then f |Ω ∈ W k,p(Ω). The inverse
statement is not true, since the boundary of Ω can get wery complicated.

This question is related to Whitney extension. Given a function f ∈W k,p(Ω), we ask whether
f can be extended to g on Rn s.t.

∥g∥Wk,p ≤ C∥f∥Wk,p , g|Ω = f.

This is true when ∂Ω is a Ck manifold.

§4.1.2 Restrictions

Another question is about the restriction of functions. When f ∈ C(Rn), clearly f(0, x) ∈ C(Rn−1).
But if f ∈ L1(Rn), the function f(0, x) may not be measurable at all.

The question is under what conditions can we take the restrictions and get reasonably good
properties.

The so-called trace theorem gives an answer to this question. When f ∈ Hs(Rn), s ≥ 1
2 , then

f(0, x) ∈ Hs− 1
2 (Rn−1).

§4.2 The Hs function space

• In Hs(Rn), by Plancherel’s formula,

∥f∥Hs = ∥(1 + |ξ|2) s
2 f̂(ξ)∥L2 , ∀s ∈ R.

This is equivalent to the map

T : L2(Rn) → Hs(Rn), f 7→ F−1((1 + |ξ|2)− s
2 f), s ≥ 0

is an isometry of Banach spaces.

For the case s < 0, think of Hs(Rn) as the dual space of H−s(Rn).

• Consider the space Hs(Ω). When s is an integer, Hs(Ω) =W s,2(Ω).

• When 0 < s < 1, define the Hs norm

∥f∥2Hs(Ω) = ∥f∥2L2(Ω) +

∫∫
Ω×Ω

|f(x)− f(y)|2

|x− y|n+2s
dxdy.

This norm will make Hs(Ω) a Banach space.
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• For general s > 0, define

∥f∥Hs = ∥f∥H[s](Ω) +

∫∫
Ω×Ω

|∂kf(x)− ∂kf(y)|2

|x− y|n+2{s} dxdy.

• At last we define H−s(Ω) as the dual space of Hs
0(Ω). (won’t use it in this course)

Recall the embedding theorem of Hs,

Theorem 4.2.1

When s > n
2 , we have

∥f∥L∞(Rn) ≤ C∥f∥Hs(Rn), ∀f ∈ Hs(Rn).

If s− n
2 is not an integer,

∥f∥
C[s−n

2
],{s−n

2
} ≤ C∥f∥Ḣs , ∀f ∈ Hs(Rn).

Proof. To prove the first one,

∥f∥L∞ ≤ ∥f̂∥L1

≤ ∥(1 + |ξ|2) s
2 f̂∥L2 · ∥(1 + |ξ|2)− s

2 ∥L2

≤ Cs,n∥f∥Hs(Rn).

The second can be proved similarly using Fourier transformation and Holder’s inequality.

Let fλ(x) = f(λx) be a scaling of f .

• ∥fλ∥L∞ = ∥f∥L∞ .

• ∥fλ∥Ḣs ≈ ∥∂sfλ∥L2 = λs−
n
2 ∥f∥Ḣs .

• ∥fλ∥C0,γ = sup |fλ(x)−fλ(y)|
|x−y|γ = λγ∥f∥C0,γ .

By replacing f to fλ in the above theorem we can see why s must be strictly larger than n
2 .

Theorem 4.2.2

When s > n
2 , for all f, g ∈ Hs(Rn) we have

∥fg∥Hs ≤ C∥f∥Hs∥g∥Hs .

Proof. By Minkowski’s inequality, (or by Fourier transformation)

∥f ∗ g∥L2 ≤ C∥f∥L1∥g∥L2 .

For all s > 0, we have

(1 + |ξ|2)s ≤ 22s((1 + |ξ − η|2)s + (1 + |η|2)s).
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Hence

∥fg∥Hs = ∥(1 + |ξ|2) s
2 f̂ ∗ ĝ∥L2

≤ C

∥∥∥∥∫ (1 + |ξ − η|2)sf̂(ξ − η)ĝ(η) dη

∥∥∥∥
L2

+ C

∥∥∥∥∫ (1 + |η|2)sĝ(η)f̂(ξ − η) dη

∥∥∥∥
L2

≤ C∥ĝ∥L1∥(1 + |ξ|2)sf̂(ξ)∥L2 + · · ·
≤ C∥g∥Hs∥f∥Hs .

Returning to the weak derivatives, since it’s defined by integrals, we can change its value on
any null sets.

The trace theorem tells us that for f ∈W k,p(Ω), there exists an operator T : f 7→ Tf ∈ Lp(∂Ω)
s.t. if f ∈ W k,p(Ω) ∩ C(Ω), then Tf = f |∂Ω, with a bounded Lp norm. Note that here we put
some more requirements on f , so this do not contradicts with the fact above.

§4.3 Sobolev embedding theorem

Earlier we saw a simple embedding theorem of Hs, in this section we’ll handle general situations.
First recall that the weak Lp space Lp

w is defined as

Lp
w = {f : ∥f∥Lp

w
:= sup

α
(αΛ

1
p (f, α)) < +∞}.

Where Λ(f, α) := m({|f | > α}).
If f ∈ Lp,

∥f∥pLp = p

∫ +∞

0

αp−1Λ(f, α) dα

≥
∫
|f |>α

|f |p dx ≥ αpΛ(f, α)

Therefore ∥f∥Lp ≥ ∥f∥Lp
w
.

Keep in mind that ∥·∥Lp
w
is NOT a norm.

Theorem 4.3.1 (Marcinkiewiz)

Suppose T is a sub-linear operator, i.e. ∃C constant s.t.

|T (f + g)| ≤ C(|T (f)|+ |T (g)|), |T (λf)| = |λT (f)|.

If T satisfies that
∥Tf∥Lp0

w
≤M0∥f∥Lp0 , ∥Tf∥Lp1

w
≤M1∥f∥Lp1 ,

then we have
∥Tf∥Lp ≤ γMθ

0M
1−θ
1 ∥f∥Lp .

Where 1 ≤ p0 < p < p1 ≤ +∞, and 1
p = θ

p0
+ 1−θ

p1
, γ is a constant.

Proof. WLOG C = 1. We can decompose f into

f = fχ|f |>α + fχ|f |≤α =: f1 + f2.
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It’s clear that f1 ∈ Lp0 , f2 ∈ Lp1 .
Hence

Λ(Tf, 2α) ≤ Λ(Tf1, α) + Λ(Tf2, α) ≤Mp0

0 α−p0∥f1∥p0

Lp0 +Mp1

1 α−p1∥f2∥p1

Lp1 .∫
α−p0∥f1∥p0

Lp0α
p−1 dα =

∫
α−p0+p−1

∫
|f |>α

|f |p0 dxdα

=

∫
|f |p0(p− p0)

−1|f |p−p0 dx

= (p− p0)
−1∥f∥pLp .

Doing the same thing with the other term and use the fact that

∥Tf∥pLp = p

∫ ∞

0

Λ(Tf, 2α)(2α)p−1 d(2α)

we’ll get the result.

Recall that the maximal function of f ∈ L1(Rn) is defined as

M(f)(x) := sup
B∋x

1

|B|

∫
B

|f(y)|dy.

In fact this M is a sub-linear operator, since M(f + g) ≤ M(f) +M(g).
Also note that ∥M(f)∥L∞ ≤ ∥f∥L∞ , and ∥M(f)∥L1

w
≤ 3n∥f∥L1 . By the above theorem we

know
∥M(f)∥Lp ≤ Cp∥f∥Lp , 1 < p < +∞.

However, in most cases the index of Lp0 and Lp1 are not the same on both sides, like F , the
Fourier transformation satisfying ∥F(f)∥L∞ ≤ ∥f∥L1 and ∥F(f)∥L2 = ∥f∥L2 , we hope to get
∥F(f)∥Lp ≤ ∥F(f)∥Lq . But this is beyond our capability for now.

Let D = {z | 0 < Re(z) < 1}.

Lemma 4.3.2 (Hadamard three lines lemma)

Let f be a bounded analytic function on D, and continuous on D. If

|f(0 + ib)| ≤M0, |f(1 + ib)| ≤M1,∀b ∈ R.

Then we have
|f(a+ ib)| ≤M1−a

0 Ma
1 , ∀0 ≤ a ≤ 1, b ∈ R.

Proof. WLOG M0,M1 > 0. (Otherwise it must be zero everywhere)

Let Fϵ(z) = e−ϵ(1−z)z f(z)

M1−z
0 Mz

1

. Since Fϵ(z) is continuous on D, analytic on D,

|Fϵ(a+ ib)| = e−ϵa(1−a)−ϵb2 |f(a+ ib)|
M1−a

0 Ma
1

.

Consider DN = D ∩ {|Im(z)| ≤ N}. By analytic property, the maximum and minimum of f
must be acheived at the boundary. Take N large, we can prove Fϵ ≤ 1 on the boundary of DN .
Therefore Fϵ ≤ 1 for all ϵ > 0 sufficiently small.

We say a linear operator Tz is analytic wrt z, if it maps simple functions to measurable
functions, and

∫
f(x)(Tzg)(x) dx is an analytic function of z on D, and bounded continuous on

D.
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Theorem 4.3.3 (Stein-Riesz-Thorin)

Let 0 < p0, p ≤ +∞, 1 ≤ q0, q1 ≤ +∞, Tz is an analytic linear operator satisfying

∥Tibf∥Lq0 ≤M0∥f∥Lp0 , ∥T1+ibf∥Lq1 ≤M1∥f∥Lp1 .

Then we have
∥Ta+ibf∥Lq ≤Ma

0M
1−a
1 ∥f∥Lp .

Here 0 < a < 1, and 1
q = a

q0
+ 1−a

q1
, 1

p = a
p0

+ 1−a
p1

.

Theorem 4.3.4 (Riesz-Thorin)

Let T be a linear operator, if

∥Tf∥Lq0 ≤M0∥f∥Lp0 , ∥Tf∥Lq1 ≤M1∥f∥Lp1 .

We have ∀f ∈ Lp0 ∩ Lp1 ,
∥Tf∥Lq ≤Mθ

0M
1−θ
1 ∥f∥Lp .

for 1
p = θ

p0
+ 1−θ

p1
, 1

q = θ
q0

+ 1−θ
q1

, θ ∈ (0, 1).

Proof. Take Tz = T , by above theorem the conclusion holds for simple functions.
For general f , take simple functions fk s.t.

lim
k→∞

∥f − fk∥Lpi = 0.

∥T (f − fk)∥Lq ≤ ∥T (f − fk)∥θLq0 ∥T (f − fk)∥1−θ
Lq1

≤ (M0∥f − fk∥Lp0 )θ(M1∥f − fk∥Lp1 )1−θ → 0.

Theorem 4.3.5 (Young’s inequality)

Let T be a linear operator defined as

Tf(x) :=

∫
k(x, y)f(y) dy

If there exists constant C s.t.

sup
x
∥k(x, ·)∥Lr ≤ C, sup

y
∥k(·, y)∥Lr ≤ C.

Then ∥Tf∥Lq ≤ C∥f∥Lp for 1 + 1
q = 1

r + 1
p , 1 ≤ p ≤ r′, 1 ≤ q, r ≤ +∞. (Here r′ = r

r−1 )
When q = r, p = 1, this is the integral version of Minkowski’s inequality.
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Remark 4.3.6 — The relation between p, q, r can be implied by a scaling transformation.
Let kλ = k(λx, λy), fλ(x) = f(λx). Then ∥fλ∥Lp = λ−

n
p ∥f∥Lp , similarly C changes by λ−

n
r ,

∥Tf∥Lq changes by λ−n−n
q .

When the operator is the convolution operator, i.e. k(x, y) = k(x − y), then Tf = k ∗ f , we
have

∥k ∗ f∥Lq ≤ ∥k∥Lr∥f∥Lp .

When T = F is the Fourier transformation, by Riesz-Thorin interpolation inequality,

∥F(f)∥Lp ≤ ∥f∥Lp′ , p′ =
p

1− p
, p ≥ 2.

Theorem 4.3.7 (Hardy-Littlewood-Sobolev)

Let 0 < γ < n, 1 < p < q < +∞ satisfying 1− γ
n = 1

p − 1
q . We have

∥f ∗ | · |−γ∥Lq ≤ Cp,q,n∥f∥Lp .

Proof. WLOG f ≥ 0.

f ∗ | · |−γ =

∫
f(x− y)|y|−γ dy

=

∫
|y|≥R

f(x− y)|y|−γ dy +

∫
|y|<R

f(x− y)|y|−γ dy

≤ ∥f∥Lp∥|y|−γχ|y|>R∥Lp′ +

∞∑
k=0

∫
2−k−1R≤|y|<2−kR

f(x− y)|y|−γ dy.

Note that (∫
|y|>R

|y|−γp′
dy

) 1
p′

= c

(∫ +∞

R

s−γp′+n−1 ds

) 1
p′

= cR
−γ+ n

p′

Also

∞∑
k=0

∫
2−k−1R≤|y|<2−kR

f(x− y)|y|−γ dy ≤
∞∑
k=0

(2−kR)−γ

∫
|y|≤2−kR

|f(x− y)|dy ≤ CRn−γM(f).

Therefore if we take R s.t. Rn−γM(f)(x) = R
−γ+ n

p′ ∥f∥Lp ,

f ∗ | · |γ ≤ c∥f∥LpR
−γ+ n

p′ + CRn−γM(f)(x) = C(M(f)(x))
p
q ∥f∥1−

p
q

Lp .

Hence taking Lq norm on both sides will yield the result.

Now we can state the main result:
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Theorem 4.3.8 (Gagliardo-Nirenberg-Sobolev)

For 1 ≤ p < q < +∞, m ≤ n are nonnegative integers. If 1
p − 1

q = m
n ,

∥f∥Lq ≤ Cp,q,n∥∂mf∥Lp , f ∈ C∞
0 (Rn).

When q = +∞, m > n
p , we have

∥f∥L∞ ≤ Cp,m,n,r(∥∂mf∥Lp + ∥f∥Lr ), ∀f ∈ C∞
0 (Rn), 1 ≤ r ≤ +∞.

More generally, when r ≥ n, 1 ≤ p ≤ q ≤ +∞, except p = +∞, r = n, q < +∞,

∥f∥Lq ≤ C(∥∇f∥Lr + ∥f∥Lp).

Remark 4.3.9 — Again, the relation between p, q,m, n can be derived by scaling.
This theorem states that the regularity of derivatives can be passed to the original function

(with Lp replaced by a higher Lq).
The second inequailty induces (when r = p)

∥f∥L∞ ≤ C∥f∥Wm,p .

Proof of first inequality. Actually we only need to prove the case m = 1, since we can repeatedly
apply m = 1 inequality to get larger m.

When p > 1, since f has compact support,

C|f(x)| ≤
∫
Sn−1

∫ +∞

0

|∇f(x− rω)|dr dω =

∫
Rn

|∇f(x− y)||y|−(n−1) dy = |∇f | ∗ | · |−(n−1).

Now by 1− n−1
n = 1

p − 1
q and Hardy-Littlewood-Sobolev,

∥f∥Lq ≤ C∥∇f∥Lp .

When p = 1, we need to prove

∥f∥
L

n
n−1

≤ C∥∇f∥L1 .

When n = 1, it’s trivial; When n = 2,

f(x, y) ≤
∫
R
|∂xf(s, y)|ds, f(x, y) ≤

∫
R
|∂yf(x, t)|dt.

Multiplying these together we’ll get

∥f∥2L2 ≤
∫

|∂xf(s, y)∂yf(x, t)|dsdtdxdy =

∫
|∂xf(x, y)|dxdy

∫
|∂yf(x, y)|dxdy.

Hence the result is true.
For general n = k, we proceed by induction. Let x ∈ R, y ∈ Rk−1.∫∫

|f(x, y)|
k

k−1 dx dy ≤
∫
Rk−1

(∫
|f(x, y)|dx

)(∫
|∂xf(s, y)|ds

) 1
k−1

dy

≤
∥∥∥∥∫ |∂xf(s, y)|ds

∥∥∥∥ 1
k−1

L1
y

·
∥∥∥∥∫ |f(x, y)|dx

∥∥∥∥
L

k−1
k−2
y

≤ ∥∇f∥
1

k−1

L1 ·
∥∥∥∥∫ |∇yf(x, y)|

∥∥∥∥
L1

x,y

.
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Proof of second inequality. When m = 1, p > n, let φ be a smooth function s.t. φ(x) = 1 when
|x| ≤ 1, and φ(x) = 0 when |x| > 2.

|f(0)| = |fφ(0)| ≤ |∇(fφ) ∗ | · |−(n−1)(0)|

=

∣∣∣∣∫ ∇(fφ)(y)|y|−(n−1) dy

∣∣∣∣
=

∫
|y|≤2

∇(fφ)(y)|y|−(n−1) dy.

Thus
|f(0)| ≤ ∥∇(fφ)∥Lp∥|y|−(n−1)χ|y|≤2∥Lp′ = C∥∇(fφ)∥Lp .

Since we have

∥∇(fφ)∥Lp ≤ ∥∇f · φ∥Lp + ∥f∇φ∥Lp ≤ ∥∇f∥Lp + ∥f∥θLr∥∇φ∥1−θ
Lq .

Where 1
p = θ

r + 1−θ
q .

In the proof we encountered an inequality that looks like this:

∥f∥
L

n
n−1

≤ C∥∇f∥L1 .

This is related to the isoperimetric inequality :

|Ω|
n−1
n ≤ Cn|∂Ω|, Ω ⊂ Rn.

Which states the relations between the volume of a set and its “surface area”. Of course here we
require the boundary to have good properties so that we can define its “area”.

Another related formula is the Co-area equality. (which we proved as homework in manifold
section) ∫

Ω

g(x)|∇u(x)|dx =

∫ +∞

−∞

(∫
u−1(t)

g(x) dσ

)
dt.

Here σ is the measure on the manifold u−1(t).
From this we can prove the equvalence of isoperimetric inequality and Sobolev inequality. As-

sume Sobolev inequality, let fϵ → χΩ, intuitively ∥fϵ∥L n
n−1

→ |Ω|n−1
n , and

∫
Ω
|∇fϵ| =

∫ 1

0
|f−1

ϵ (t)|dt→
|∂Ω|. (later when we learned distributions, we can directly take f = χΩ.)

Conversely, for f ∈ C∞
0 , let Ωt = {f > t}, ∂Ωt = {f = t}. Isoperimetric inequality gives

|{f > t}|n−1
n ≤ C|{f = t}|. By co-area formula again,

C

∫
|∇f |dx = C

∫
t≥0

|{f = t}|dt ≥
∫
t≥0

|{f > t}|
n−1
n dt.

Since

t|{f > t}|
n−1
n ≤

∫ t

0

|{f > s}|
n−1
n ds ≤

∫ +∞

0

|{f > s}|
n−1
n ds ≤ C∥∇f∥L1 .

and∫
|f |

n
n−1 dx =

n

n− 1

∫
t≥0

|{f > t}|t
1

n−1 dt ≤ n

n− 1

∫
t≥0

|{f > t}|
n−1
n dt·C∥∇f∥

1
n−1

L1 ≤ Cn∥∇f∥
n

n−1

L1 .

We’ve shown the equivalence of these two inequality.
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§5 Distribution theory

§5.1 Definitions and motivations

Let Ω ⊂ Rn, given a compact set K ⊂ Ω, the function space C∞
K (Ω) is the space of all smooth

functions whose support is in K.

C∞
0 (Ω) =

⋃
K⊂Ω

C∞
K (Ω) =: D(Ω)

is the usual compact supported smooth functions in Ω. This space is used as test function space
later.

Definition 5.1.1 (Distributions). The distributions on Ω (also called generalized functions)
is a linear functional on D(Ω)

u : D(Ω) → C, φ 7→ ⟨u, φ⟩ ,

satisfying

• ∀φ,ψ ∈ D(Ω), α, β ∈ C we have

⟨u, αφ+ βψ⟩ = α ⟨u, φ⟩+ β ⟨u, ψ⟩ .

• (Continuity) For all compact set K ⊂ Ω, there exists a nonnegative integer P and constant
C(P,K), such that

| ⟨u, φ⟩ | ≤ C sup
|α|≤P

∥∂αφ∥L∞(K).

Remark 5.1.2 — Recall that for general functionals, the continuity is defined as

∥u(φ)∥B1
≤ C∥φ∥B2

But since D(Ω) is not a Banach space, we need to change the norm of φ to the stated
one.

If the choice of P does not depend on K, then the minimal such P is called the order of u.

Denote D ′(Ω) the set of distributions on Ω. It’s the dual space of D(Ω).

Definition 5.1.3 (Limits). Let un ∈ D ′(Ω), we say un converges to u if

lim
n→∞

⟨un, φ⟩ = ⟨u, φ⟩ , ∀φ ∈ D(Ω).

We write un
D′

−−→ u.

Example 5.1.4 (Dirac function)

This is one of the motivations to develop theory of distributions.
For all a ∈ Ω, define δa ∈ D ′(Ω), ∀φ ∈ D(Ω) we have ⟨δa, φ⟩ = φ(a). Since

| ⟨δa, φ⟩ | = |φ(a)| ≤ ∥φ∥L∞(K),

so δa is a distribution of order 0.
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Example 5.1.5 (Locally integrable functions)

For all f ∈ L1
loc(Ω), define the functional Tf to be

Tf : D(Ω) → C, φ 7→
∫
Ω

fφ.

Since |
∫
Ω
fφ| ≤ ∥f∥L1(K)∥φ∥L∞(K), take C = ∥f∥L1(K) and P = 0, we see that Tf is a

distribution of order 0, thus classical functions can be viewed as distributions.
Moreover f 7→ Tf is injective (up to a.e. equality).

Example 5.1.6

Take ϕ(x) ∈ D(Rn) s.t. ∫
Rn

ϕ(x) dx = 1.

For ε > 0, define
ϕε(x) = ε−nϕ(xε−1)

It is an approximation to identity, we have ϕε
D′

−−→ δ0.

⟨ϕε, φ⟩ =
∫
Rn

ε−nϕ(xε−1)φ(x) dx =

∫
Rn

ϕ(x)φ(εx) dx→ φ(0).

Example 5.1.7 (Radon measure)

Let µ be a measure on (Ω, B(Ω)). If for every compact set K ⊂ Ω, µ(K) < +∞, we say µ is
a Radon measure.

For any Radon measure µ, define a distribution

Tµ : ∀φ ∈ D(Ω), ⟨Tµ, φ⟩ =
∫
Ω

φdµ.

Since for any K ⊂ Ω, φ ∈ C∞
K (Ω),

| ⟨Tµ, φ⟩ | ≤ µ(K)∥φ∥L∞(K).

Tµ is a distribution of order 0.
In fact all the distributions of order 0 are (signed) Radon measures.
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Example 5.1.8

Note that 1
x /∈ L1

loc(R), so we can’t realize 1
x as a distribution directly.

However, we can define 〈
pv

1

x
, φ

〉
=

∫ +∞

0

φ(x)− φ(−x)
x

dx.

Called the principal value distribution of 1
x .∣∣∣∣∫ +∞

0

φ(x)− φ(−x)
x

dx

∣∣∣∣ = ∣∣∣∣∫ +∞

0

∫ 1

−1

φ′(xt) dtdx

∣∣∣∣ ≤ C(K)∥φ′∥L∞(K)

Thus pv 1
x is a distribution of order at most 1. In fact its order is 1.

§5.2 Derivatives of distributions

Definition 5.2.1. Let u ∈ D ′(Ω), α is a multiple index. Define

⟨∂αu, φ⟩ = (−1)|α| ⟨u, ∂αφ⟩ .

We need to check that ∂αu is a distribution. For any compact set K, φ ∈ C∞
K (Ω), then

∂αφ ∈ C∞
K (Ω) as well.

| ⟨∂α, φ⟩ | = | ⟨u, ∂αφ⟩ | ≤ C sup
|β|≤P

∥∂β∂αφ∥L∞(K) ≤ C sup
|β|≤P+|α|

∥∂βφ∥L∞(K).

Thus ∂αu is a distribution of order at most k + |α|, where k is the order of u.

Example 5.2.2 (Heaviside function)

Consider the locally integrable function

H(x) = χx≥0

as a distribution, it has a derivative H ′(x) = δ0 since for φ ∈ D(R),

⟨H ′, φ⟩ = −⟨H,φ′⟩ = −
∫
H(x)φ′(x) dx = −

∫ +∞

0

φ′(x) dx = φ(0).

Another example is pv 1
x = (log |x|)′.

Since log |x| ∈ L1
loc(R), by definition,

⟨(log |x|)′, φ⟩ = −⟨log |x|, φ′(x)⟩ = −
∫
R
log |x|φ′(x) dx = −

∫ +∞

0

log x(φ′(x) + φ′(−x)) dx

If we view this as a generalized Riemann integral, using integration by parts,

⟨(log |x|)′, φ⟩ = − log x(φ(x)− φ(−x))
∣∣∣+∞

0
+

∫ +∞

0

φ(x)− φ(−x)
x

dx =

〈
pv

1

x
, φ

〉
.
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§5.3 C∞(Ω)-module structure of distributions

Now we’ve seen that distributions can perform addition and differentiation, but we can’t simply
define the multiplication of distributions.

since D ′(Ω) is the dual space of C∞
0 (Ω), for f ∈ C∞(Ω), u ∈ D ′(Ω), we can define the

multiplication fu as
⟨fu, φ⟩ = ⟨u, fφ⟩ .

if u is a locally integrable function, this product coincides with the normal multiplication of func-
tions.

Since ∀K,∃P,C, s.t.

| ⟨fu, φ⟩ | ≤ C
∑

|α|≤P

∥∂α(fφ)∥L∞(K) ≤ C · C(f, P,K)
∑

|α|≤P

∥∂αφ∥L∞(K).

fu is indeed a distribution.

Proposition 5.3.1 (Leibniz’s law)

∂(fu) = ∂uf + ∂fu.

Proof.

⟨∂(fu), φ⟩ = −⟨fu, ∂φ⟩ = −⟨u, f∂φ⟩ = −⟨u, ∂(fφ)− ∂fφ⟩ = ⟨∂uf + ∂fu, φ⟩ .

Example 5.3.2

x · pv 1
x = 1 since ∀φ ∈ D(Ω),〈

x · pv 1
x
, φ

〉
=

〈
pv

1

x
, xφ

〉
=

∫ +∞

0

xφ(x) + xφ(−x)
x

dx =

∫ +∞

0

(φ(x)+φ(−x)) dx = ⟨1, φ⟩ .

Next we’ll study the variable substitution of distributions.
Recall that in differential manifolds, let Φ : Ω1 → Ω2 be a differential homeomorphism, then it

induces a pushforward of tangent spaces Φ∗ : TΩ1 → TΩ2, while in cotangent space (or 1-forms)
it induces a pullback Φ∗ : T ∗Ω2 → T ∗Ω1.

Let u1 ∈ D ′(Ω1), φ1 ∈ D(Ω1), and Φ : Ω1 → Ω2 a smooth map. Formally we can write

⟨u1, φ1⟩ =
∫
u1(x)φ1(x) dx =

∫
u1(Φ

−1(y))φ(Φ−1(y)) dΦ−1(y) =

∫
u1Φ

−1(y)φ1Φ
−1(y)|JΦ−1 |dy

Thus we can define a new distribution “u ◦ Φ−1” as〈
u ◦ Φ−1, φ1 ◦ Φ−1|JΦ−1 |

〉
= ⟨u, φ1⟩ .

Hence the pushforward and pullback is defined as

⟨Φ∗u1, φ2⟩ = ⟨u1, φ2 ◦ Φ(x)|JΦ|(x)⟩

⟨Φ∗u2, φ1⟩ =
〈
u2, φ1 ◦ Φ−1(y)|JΦ−1 |(y)

〉
Here we won’t bother to check they are indeed distributions because of the complicated computa-
tions.
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Example 5.3.3

Let x0 ∈ Ω1, y0 ∈ Ω2, Φ(x0) = y0, then

Φ∗δy0
= |JΦ(x0)|−1δx0

.

Proposition 5.3.4 (Chain rule)

∂j(Φ
∗u2) =

n∑
k=1

∂jΦk · Φ∗∂ku2.

Proof. For all φ ∈ C∞
0 (Ω1),〈

n∑
k=1

∂jΦkΦ
∗∂ku2, φ

〉
=

n∑
k=1

⟨Φ∗∂ku2, ∂jΦkφ⟩

=

n∑
k=1

〈
∂ku2, (∂jΦk · φ) ◦ Φ−1|JΦ−1 |

〉
= −

n∑
k=1

〈
u2,

∂

∂yk
(∂jΦk ◦ Φ−1 · (φ ◦ Φ−1)|JΦ−1 |)

〉

Note that
n∑

k=1

∂

∂yk

(
∂Φk

∂xj
(Φ−1(y))|JΦ−1(y)|

)
= 0.

Since ∀g ∈ C∞
0 (Ω2), by Stokes formula, substitution and integration by parts,

0 =

∫
Ω1

∂

∂xj
(g ◦ Φ) dx =

∫
Ω1

n∑
k=1

∂kg
∂Φk

∂xj
dx = −

∫
Ω2

n∑
k=1

g∂k

(
∂Φk

∂xj
(Φ−1(y))|JΦ−1(y)|

)
dy

Continuing the computation,

= −
n∑

k=1

〈
u2, ∂jΦk ◦ Φ−1|JΦ−1 | · ∂

∂yk
(φ ◦ Φ−1)

〉

= −
n∑

k=1

〈
Φ∗u2, ∂jΦk · ∂φ ◦ Φ−1

∂yk
◦ Φ
〉

= ⟨∂jΦ∗u2, φ⟩ .

Stokes formula can also be generalized for distributions.
Let ν(x) = (ν1(x), . . . , νn(x)) be the outer normal unit vector of ∂Ω, σ the measure on ∂Ω.

Stokes formula says ∫
Ω

∂φ

∂xj
dx =

∫
∂Ω

φνj dσ.

Hence the distribution version is

⟨χΩ, ∂jφ⟩ = −⟨∂jχΩ, φ⟩ .

42



Analysis III 5 DISTRIBUTION THEORY

Theorem 5.3.5

Let Ω be a smooth region, ν(x) is the unit outer normal vector, σ is the measure on ∂Ω. Then
as distributions, we have

∂iχΩ = −νi dσ, ∇χΩ = −ν dσ.

In one dimensional version, f(x) integrable on (a, b),

F (x) =

∫ x

a

f(t) dt.

then F ′(x) = f(x), a.e. (Since absolute continuity). As distributions we have

F ′(x) = f(x) ∈ D ′

Theorem 5.3.6

Given a distribution u ∈ D ′((a, b)). If the derivative u′ = 0 as a distribution, then u = c is a
constant.

Proof. Since
⟨u′, φ⟩ = −⟨u, φ′⟩ = 0,

note that
∫ b

a
φ′ dx = 0, for all ψ ∈ D((a, b)), let

g(x) = ψ(x)−

(∫ b

a

ψ(y) dy

)
λ(x),

where λ(x) ∈ D((a, b)) and
∫ b

a
λ dx = 1.

Thus G(x) =
∫ x

a
g(y) dy ∈ C∞

0 ((a, b)). This gives

0 = ⟨u,G′(x)⟩ =

〈
u, ψ(x)− λ(x)

∫ b

a

ψ(y) dy

〉

=⇒ ⟨u, ψ⟩ =
∫ b

a

ψ(y) dy ⟨u, λ⟩ = ⟨⟨u, λ⟩ , ψ⟩ .

This means u = ⟨u, λ⟩ is a constant distribution.

In higher dimensional cases, we only consider Ω = Rn here. For ϕ ∈ C∞
0 (Rn), there exists

Φ1 ∈ C∞
0 and χ ∈ C∞

0 (R) s.t.

ϕ(x1, . . . , xn) = ∂1Φ1 + χ(x1)

∫
R
ϕ(s, x2, . . . , xn) ds,

∫
χ(x) dx = 1.

Since
∫
R ϕ(s, x2, . . . , xn) ds is a function in Rn−1, we can use induction on n.
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§5.4 Supports of distributions

For a function f , supp f := {f(x) ̸= 0} is the closure of the nonzero points. But this can’t be
generalized to distributions, so if we rephrase this as

supp f = ({x | ∃Vx ∋ x, s.t. f(x)|Vx
= 0})c

we can do the same for distributions:

Definition 5.4.1 (Support). Let u be a distribution on Ω,

suppu := Ω \ {x ∈ Ω | ∃Vx s.t. ⟨u, φ⟩ = 0,∀φ ∈ D(Vx)}.

here Vx is an open neighborhood of x.
If supp(u) is compact, we say u is a compact supported distribution. Let E (Ω) denote all

the distributions with compact support.

Theorem 5.4.2 (Unit decomposition)

Let K ⊂ Rn be a compact set, {U1, . . . , UN} is an open covering of K. Then ∃χj ∈ C∞
0 (Uj)

s.t.

• 0 ≤ χj(x) ≤ 1.

• There exists an open set V ⊇ K, such that ∀x ∈ V ,

χ1(x) + · · ·+ χN (x) = 1.

§5.5 Convolutions of distributions

For a smooth function f , when u is a function, we have

⟨u ∗ f, φ⟩ =
∫∫

u(x−y)f(y)φ(x) dxdy =

∫∫
u(x)f(y)φ(x+y) dx dy =

〈
u,

∫
f(−x)φ(y − x) dx

〉
Therefore let Rf(x) := f(−x) be the reflection operator, we can define

⟨u ∗ f, φ⟩ = ⟨u,Rf ∗ φ⟩

for general distributions u.
We need to ensure f is integrable and has compact support, so that Rf ∗ φ ∈ C∞

0 (Rn).
Since

| ⟨u ∗ f, φ⟩ | ≤ C
∑

|α|≤P

∥∂α((Rf) ∗ φ)∥L∞(supp(Rf)∗φ)

≤ C
∑

|α|≤P

∥Rf ∗ ∂αφ∥L∞(supp(Rf)∗φ)

≤ C
∑

|α|≤P

∥Rf∥L1∥∂αφ∥L∞(suppφ).

The distribution u ∗ f is well-defined.
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Theorem 5.5.1

Let f ∈ C∞
0 (Rn), then u ∗ f as a distribution is equivalent to the smooth function u(Rτxf)

w.r.t. x.
Here τx is the translation operator.

Proof. First we prove that u(f(x− y)) is a smooth function of x.
For the continuity, u(f(x0 − y)) − u(f(x − y)) = u(f(x0 − y) − f(x − y)) → 0 when x → x0

from the continuity of distributions.

The derivative is u(f(x0+tv−y)−f(x−y))
t = u( f(x0+tv−y)−f(x−y)

t ) → u(∂vf(x0 − y)). Hence it is
indeed smooth.

Secondly, we need to prove ⟨u ∗ f, φ⟩ = ⟨u(Rτxf), φ⟩.

⟨u,Rf ∗ φ⟩ = u

(∫
(Rf)(y − x)φ(x) dx

)
= u

(∫
Rτxf(−y) · φ(x) dx

)
Now by the definition of Riemann integrals, for all ε > 0, ∃ a partition ∆j s.t. the finite sum
approaches the integral.

Since u is commutative with finite sums, and u has continuity as operators, so u is commutative
with integrals.

Let ϕε be an approximation to identity, then as distributions

u ∗ ϕε
D′

−−→ u ⇐⇒ ⟨u ∗ ϕε, φ⟩ = ⟨u,Rϕε ∗ φ⟩ → ⟨u, φ⟩ .

This means that smooth functions are dense in distributions.

Definition 5.5.2 (Convolution of distributions). Let u ∈ D ′(Rn), c ∈ E ′(Rn). Define u ∗ c as

⟨u ∗ c, φ⟩ = ⟨u,Rc ∗ φ⟩ .

Where ⟨Rc, φ⟩ = ⟨c,Rφ⟩ is the reflection of distributions.

Proof. For all K, ∃C,P s.t.

| ⟨u, φ⟩ | ≤ C
∑

|α|≤P

∥∂αφ∥L∞(K).

Let L := suppRc, then ∃C1 and P1 s.t.

| ⟨Rc, φ⟩ | ≤ C1

∑
|α|≤P1

∥∂αφ∥L∞(L).
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Hence

| ⟨u ∗ c, φ⟩ | = | ⟨u,Rc ∗ φ⟩ |

≤ C
∑

|α|≤P

∥∂α(Rc ∗ φ)∥L∞(supp(Rc∗φ))

≤ C
∑

|α≤P |

∥Rc ∗ ∂αφ∥L∞

= C
∑

|α|≤P

∥Rc(∂αφ(x− y))∥L∞
x

≤
∑

|α|≤P

∥C1 sup
|β|≤P1

∥∂β∂αφ(x− y)∥L∞
x
∥L∞

y

≤ CC1

∑
|α|≤P,|β|≤P1

∥∂β∂αφ(z)∥L∞
z (K).

Example 5.5.3 (Translation operator)

Given a distribution u, define τau as

⟨τau, φ⟩ = ⟨u, τ−aφ⟩ .

Hence u ∗ δa = τ−au.

⟨u ∗ δa, φ⟩ = ⟨u, δ−a ∗ φ⟩ = ⟨u, φ(x+ a)⟩ = ⟨u, τaφ⟩ .

Note that in fact δa = τ−aδ0, this is a little surprising.

Proposition 5.5.4

Let u ∈ D ′(Rn), c ∈ E ′(Rn),

• supp(u ∗ c) ⊂ suppu+ supp c.

• Convolution is commutative with derivatives,

∂α(u ∗ c) = ∂αu ∗ c = u ∗ ∂αc.

Proof. Since ⟨u ∗ c, φ⟩ = ⟨u,Rc ∗ φ⟩,

suppφ ∩ (supp c+ suppu) = ∅ =⇒ supp(Rc ∗ φ) ∩ suppu = ∅ =⇒ ⟨u,Rc ∗ φ⟩ = 0.

We get the desired.
For the second one, just compute

⟨∂α(u ∗ c), φ⟩ = ⟨u ∗ c, ∂αφ⟩ (−1)|α| = ⟨u,Rc ∗ φ⟩ (−1)|α| = ⟨u, ∂α(Rc ∗ φ)⟩ (−1)|α|.
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Proposition 5.5.5 (Commutativity of convolutions)

Let c1, c2 be distributions with compact support, then c1 ∗ c2 = c2 ∗ c1.

Proof. Let χε = ε−nχ(xε−1) be an approximation to identity, then limε→0 c1 ∗ χε = c1. Hence

⟨c1 ∗ χε,Rc2 ∗ φ⟩ = ⟨Rc2 ∗ φ, c1 ∗ χε⟩
= ⟨Rc2, (c1 ∗ χε) ∗ Rφ⟩
= ⟨c2,R((c1 ∗ χε) ∗ Rφ)⟩
= ⟨c2, (Rc1 ∗ Rχε) ∗ φ⟩
= ⟨c2,Rc1 ∗ (Rχε ∗ φ)⟩ = ⟨c2 ∗ c1,Rχε ∗ φ⟩ .

Where the last but second equality used the associativity of convolution:
Let u ∈ D ′(Rn), f, g ∈ D(Rn). We have

⟨(u ∗ f) ∗ g, φ⟩ = ⟨u ∗ f,Rg ∗ φ⟩
= ⟨u,Rf ∗ (Rg ∗ φ)⟩
= ⟨u ∗ (f ∗ g), φ⟩ .

Theorem 5.5.6 (Continuity of convolutions)

Let ck ∈ E (Rn), there exists a compact set K, such that supp ck ⊂ K. Let uk ∈ D ′(Rn). If
there exists c and u s.t.

ck
D′

−−→ c, uk
D′

−−→ u.

Then

u ∗ ck
D′

−−→ u ∗ c, uk ∗ c D′

−−→ u ∗ c.

Remark 5.5.7 — Note that in general we can’t write uk ∗ ck
D′

−−→ u ∗ c, due to the fact that
uk doesn’t have compact supports.

Proof. Write
⟨uk ∗ c, φ⟩ = ⟨uk,Rc ∗ φ⟩ → ⟨u,Rc ∗ φ⟩ = ⟨u ∗ c, φ⟩ .

Hence the second limit holds.
The first one is because

⟨u ∗ ck, φ⟩ = ⟨u,Rck ∗ φ⟩

We need to show that Rck ∗ φ → Rc ∗ φ here. This is a little annoying, so we take a different
approach.

Let ψ be a truncation function s.t. ψ = 1 on suppφ−K. Then

⟨u,Rck ∗ φ⟩ = ⟨u, ψRck ∗ ψ⟩ = ⟨uψ,Rck ∗ φ⟩ = ⟨(uψ) ∗ ck, φ⟩ = ⟨ck ∗ (uψ), φ⟩ → ⟨c ∗ (uψ), φ⟩ .

Hence u ∗ ck
D′

−−→ u ∗ c.
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Corollary 5.5.8 (Associativity of convolutions)

Let u ∈ D ′(Rn), c1, c2 ∈ E ′(Rn).

(u ∗ c1) ∗ c2 = u ∗ (c1 ∗ c2).

Proof. When c1, c2 ∈ D(Rn), we already proved it.
When c2 = f ∈ D(Rn), using the continuity of convolutions,

(u ∗ c1) ∗ f = lim
ε→0

(u ∗ (c1 ∗ χε)) ∗ f = lim
ε→0

u ∗ ((c1 ∗ χε) ∗ f) = u ∗ (c1 ∗ f)

Hence for general cases,

(u ∗ c1) ∗ c2 = lim
ε→0

(u ∗ c1) ∗ (c2 ∗ χε)

= lim
ε→0

u ∗ (c1 ∗ (c2 ∗ χε))

= lim
ε→0

u ∗ ((c1 ∗ c2) ∗ χε)

= u ∗ (c1 ∗ c2)

Theorem 5.5.9

Let c be a distribution with compact support, f ∈ C∞(Rn). Then f ∗ c ∈ C∞(Rn) and

(f ∗ c)(x) = ⟨c, f(x− ·)⟩ .

Proof. Let χ be a truncation s.t. χ(x) = 1 for |x| ≤ 1 and suppχ ⊂ {|x| ≤ 2}.
Define χ0 = χ, χk(x) = χ(2−kx)− χ(2−k+1x), then

∞∑
k=0

χk(x) = 1, suppχk(x) ⊂ {2k−1 ≤ |x| ≤ 2k+1}.

This step is to find a unit decomposition which is locally finite. Thus

⟨f ∗ c, φ⟩ =

〈( ∞∑
k=0

fχk

)
∗ c, φ

〉
=

〈 ∞∑
k=0

fχk,Rc ∗ φ

〉

=

∞∑
k=0

⟨fχk,Rc ∗ φ⟩

=

∞∑
k=0

⟨(fχk) ∗ c, φ⟩ =
∞∑
k=0

⟨c ∗ (fχk), φ⟩ .

We are able to put the summation outside the inner product since it’s actually a finite sum (c has
compact support).

Therefore

f ∗ c =
∞∑
k=0

c ∗ (fχk) =

∞∑
k=0

⟨c, (fχk)(x− y)⟩ = ⟨c, f(x− y)⟩ .
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Definition 5.5.10 (Convolutable sets). Let F1, F2 be closed set in Rn, if ∀R > 0, ∃R′ > 0 s.t.
∀x1 ∈ F1, x2 ∈ F2,

|x1 + x2| ≤ R =⇒ |x1| < R′, |x2| < R′.

Then we say F1 and F2 are convolutable. We can also define the same thing for a series of closed
sets.

Lemma 5.5.11

Closed sets F1, F2 are convolutable =⇒ F1 + F2 is closed.

Proof. xk + yk converges =⇒ xk + yk bounded, thus xk, yk are both bounded, there exists a
subsequence which is convergent, so F1 + F2 must be closed.

Example 5.5.12

The following sets are convolutable:

• F1 is closed, F2 is compact.

• The sets {[xi,+∞)}.

• In the time-space R1+3, the solid future light cone:

Ĉ+ := {(t, x) ∈ R1+3 | t ≥ |x|}

and the future of the plane t = T :

R1+3
t≥T := {(t, x) ∈ R1+3 | t ≥ T}

are convolutable.

These sets are related to the wave equation in physics.

Proposition 5.5.13

Let u, v ∈ D ′(Rn), suppu and supp v are convolutable, then we can define the convolution as
follows.

Let χk be truncation function s.t. χk(x) = 1 for all |x| ≤ k, and suppχk ⊂ {|x| ≤ k + 1}.

⟨u ∗ v, φ⟩ = lim
k→∞

⟨(uχk) ∗ (vχk), φ⟩ .

Proof. First we prove the limit exists.
For a fixed φ, we claim that there exists N > 0 s.t.

⟨(uχk) ∗ (vχk), φ⟩ = ⟨(uχl) ∗ (vχl), φ⟩ , ∀k, l > N.

This is because if we look at the difference

⟨(χk − χl)u ∗ (χkv), φ⟩ = 0 ⇐= supp(φ) ∩ supp((χk − χl)u ∗ (χkv)) = ∅.
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Otherwise if x ∈ supp(χk − χl)u, y ∈ suppχkv, x+ y ∈ suppφ, assume that suppφ ⊂ {|x| ≤ R},
then |x+ y| ≤ R =⇒ |x|, |y| ≤ R′.

But |x| ≥ min{k, l}, contradiction!
Next we prove that this limit is independent of the choice of χk. The proof is essentially the

same, if we replace χl with χ
′
k.

At last, u ∗ v is a distribution since for any compact set K, let N > 0 s.t. K ⊂ {|x| ≤ N}. For
φ ∈ C∞

K (Rn),

⟨u ∗ v, φ⟩ = ⟨(χNu) ∗ (χNv), φ⟩ ≤ C
∑

|α|≤P

∥∂αφ∥L∞(K).

Here we omitted some bothering details.

Proposition 5.5.14

Let u, v, w ∈ D ′(Rn), suppu, supp v, suppw are convolutable, α is any multi-index.

• supp(u ∗ v) ⊂ suppu+ supp v.

• u ∗ v = v ∗ u.

• u ∗ (v ∗ w) = (u ∗ v) ∗ w.

• ∂α(u ∗ v) = ∂αu ∗ v = u ∗ ∂αv.

§6 Differential Equations

Let
P =

∑
|α|≤m

aα(x)∂
α : D ′(Ω) → D ′(Ω). (aα ∈ C∞(Ω))

It is a linear differential operator of degree m. If aα are constants, we call P to be constant
coefficient.

If aα = 0 for every |α| < m, we say P is homogenous.

Definition 6.0.1. For a differential operator P , we can define its adjoint operator

P ∗u =
∑

|α|≤m

(−1)|α|∂α(aα(x)u).

Then ⟨Pu, φ⟩ = ⟨u, P ∗φ⟩.

Definition 6.0.2. Given a constant coefficient linear differential operator P on Rn, if the distri-
bution E ∈ D ′(Ω) satisfies

P (E) = δ0,

we say E is a basic solution.
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Example 6.0.3

The Laplace operator on Rn is

∆g =

n∑
i=1

∂2

∂x2i
=
∑
i,j

1√
G
∂j(g

ij
√
G∂i)

the latter one is the general form on a Riemann manifold, and we do not require it in this
course.

The basic solution of ∆ is

E(x) =


1

2π
log |x|, n = 2

1

(2− n)|Sn−1|
1

|x|n−2
, n ≥ 3.

where |Sn−1| is the surface area of Sn−1 in Rn.

Proof. When x ̸= 0, ∆E = 0. This follows from the polar form of the Laplace operator:

∆ = ∂rr +
n− 1

r
∂r +

1

r2
∆S2 .

Then ∆E = (∂rr +
n−1
r ∂r)E(|x|) = 0, which we won’t check it here.

Example 6.0.4

The heat operator ∂t −∆ on R× Rn has basic solution

E(t, x) =
H(t)

(4πt)
n
2
e−

|x|2
4t .

Here H(t) is Heaviside function.

Proof. For all φ ∈ C∞
0 (R× Rn),

⟨(∂t−∆)E(t, x), φ⟩ = −
∫ ∞

0

∫
Rn

E(t, x)∂tφdtdx−
∫ ∞

0

∫
Rn

E∆φdtdx

= − lim
ε→0

∫ ∞

ε

∫
Rn

∂t(Eφ)− ∂tEφ+∆Eφdtdx

= − lim
ε→0

∫
Rn

φ(t, x)

(4πt)
n
2
e−

|x|2
4t dx

∣∣∣∞
ε

= lim
ε→0

∫
Rn

φ(ε, 2
√
εx)

π
n
2

e−|x|2 dx = φ(0, 0).

If E is the basic solution of P , we have

P (f ∗ E) = f

that’s why it’s called the basic solution.
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§6.1 Solutions of Laplace equation

Let E be the basic solution of ∆.

Lemma 6.1.1

If u ∈ D ′(Rn) has support inside a compact set K, then E ∗ u is smooth on Kc.

Proof. Let χ(x) be a truncation, χε = χ(ε−1(x)).
Since E is a smooth function on R \ {0}, in a neighborhood of p ∈ Kc, apply the truncation

and we’re done since the convolution of a smooth function is also smooth.

Lemma 6.1.2

Let u be a distribution with compact support. If ∆u = 0, then u = 0.

Proof. For all f ∈ C∞,

0 = ⟨∆u, f⟩ = ⟨∆u, χf⟩ = ⟨u,∆(χf)⟩ = ⟨u,∆χf + 2∇χ · ∇f + x∆f⟩ = ⟨u,∆f⟩ .

Where χ is a truncation with χ|suppu = 1.
So for all φ ∈ C∞

0 (Rn), φ ∗ E ∈ C∞,

0 = ⟨u,∆(φ ∗ E)⟩ = ⟨u, φ⟩ .

Theorem 6.1.3

Let u be a harmonic distribution on Rn, i.e. ∆u = 0, then u is a smooth function.

Proof. For all constants K > 0, take χ(x) which is 1 on {|x| ≤ K}.
Consider

∆(χu) = ∆χu+ 2∇χ∇u = fχ.

Here fχ is a compact supported distribution.
TODO..

§6.2 The basic solution of wave operator

Another important differential operator in physics is the wave operator. In the time-space R1+n,
t ∈ R, x ∈ Rn. The metric is defined as

m = −dt2 + dx2

This is known as Lorentz Geometry (The one we’re familiar with is called Riemann geometry).
In Riemann geometry, the Laplace operator is

∆g =
1√
G
∂i(g

ij
√
G∂j)
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and its counterpart in Lorentz geometry is the wave operator

□ = −∂2tt +∆x

Define a distribution on R:

χa
+ =

xa+
Γ(a+ 1)

, x+ = max{0, x}, a > −1.

Note that here we have

d

dx
χa
+ = xa−1

+

a

Γ(a)
=

xa−1
+

Γ(a− 1)
= χa−1

+ .

Hence we can define χa
+ for a < −1 using derivatives.

Lemma 6.2.1

Let k be a nonnegative integer, we have

χ−k
+ = δ

(k−1)
0 , χ

−k− 1
2

+ =
1√
π

(
x
− 1

2
+

)(k)
.

Here u(k) means the k-th derivative of u.

Proof. By definition χ−1
+ = H ′(x) = δ0, and χ

− 1
2

+ = x
− 1

2
+

1√
π
.

Definition 6.2.2. We say E+ is a future basic solution of wave equation, if

• E+ is a distribution on R1+n, such that

□E+ = 0.

• The support of E+ lies inside the light cone

supp(E+) ⊂ {(t, x) | 0 ≤ |x| ≤ t}.

Recall that the pullback of distribution:

Definition 6.2.3 (Pullbacks). Let Ω1 ⊂ Rn+m, Ω2 ⊂ Rn. Let φ : Ω1 → Ω2 be a smooth map
with rank n, then for any u ∈ D ′(Ω2), we define the pullback φ∗u as follows:

Define Φ : Ω1 → Ω2 × Rm,
Φ(x, y) = (φ(x, y), y).

For ϕ ∈ C∞
0 (Rn+m), define

⟨u, ϕ(x, y)⟩ =
〈
u,

∫
Rm

ϕ(x, y) dy

〉
i.e. we can view u as a distribution on Rn+m. Thus we can define

φ∗u = Φ∗u(x, y).

Applying the chain rule,

∂j(Φ
∗u) =

n+m∑
k=1

∂ku∂jΦk =

n∑
k=1

∂ku∂jφk.
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Proposition 6.2.4 (Basic solution of wave operator)

E+ = −π
1−n
2

2
H(t)χ

−n−1
2

+ (t2 − |x|2).

Remark 6.2.5 — In the expression, H(t) denotes it’s the “future” part, the rest is a pullback
of a distribution:

φ : R1+n → R, φ(t, x) = t2 − |x|2,

φ∗χ
− 1−n

2
+ = χ

− 1−n
2

+ (t2 − |x|2).

However, φ is not full rank at 0, thus it requires extreme caution and we won’t dive too deep
into this issue.

Proof. Let s = t2 − |x|2, we have dt = 1

2
√

s+|x|2
ds,

〈
χ
−n−1

2
+ (s), φ(t, x)

〉
=

〈
χ
−n−1

2
+ (s),

1

2

∫
Rn

φ(
√
s+ |x|2, x)√
s+ |x|2

dx

〉

When s > 0, this is well-defined; When s = 0, let ψ(s) be the function on the right, we have ψ(s)

is Ck at s = 0 with 2k + 1 < n. (Since ∂kψ(s) ≈
∫
φ(s+ |x2|)−k− 1

2 ≈ |x|−2k−1)
Therefore we can define E+ in Rn.
Inside the light cone,

□
(
χ
−n−1

2
+ (t2 − |x|2)

)
= −∂t

(
2tχ

− 1+n
2

+ (t2 − |x|2)
)
− ∂i

(
2xiχ

− 1+n
2

+ (t2 − |x|2)
)

= −2χ
− 1+n

2
+ (t2 − |x|2)− 4t2χ

− 3+n
2

+ (t2 − |x|2)

− 2nχ
− 1+n

2
+ (t2 − |x|2) + 4x2iχ

− 3+n
2

+ (t2 − |x|2)

= −2(n+ 1)χ
− 1+n

2
+ (t2 − |x|2)− 4(t2 − |x|2)χ− 3+n

2
+ (t2 − |x|2)

= 0.

Since x · χa
+ =

xa+1
+

Γ(a+1) = (a+ 1)χa+1
+ .

Now we have □E+ supports on the origin,

=⇒ □E+ =
∑

|α|≤N

Cα∂
αδ0.

Note that E+ is a homogenous distribution, specifically

E+(λx) = λ
1−n
2 E+(x).

This implies ⟨□E+, ϕ(λt, λx)⟩ = ⟨□E+, ϕ(t, x)⟩. But ⟨∂αδ0, ϕ(λt, λx)⟩ = (−1)|α|λ|α|∂αϕ(0, 0), view
it as a polynomial of λ, we must have □E+ = Cδ0.

At last we need to compute C, which should be done by find a suitable test function and
compute the inner product. But here we’ll just do this formally. (Actually I didn’t take notes of
the computation since it’s too complicated)

Below we state the solution of wave equation, which we won’t prove in this course.
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Proposition 6.2.6 (Kirchhoff’s formula)

The wave equation
□ϕ = 0, ϕ(0, x) = 0, ∂tϕ(0, x) = ϕ1(x)

has solution

ϕ(t, x) =



1

2

∫ x+t

x−t

ϕ1(y) dy, n = 1

π
1−n
2

4

(
1

2t

d

dt

)n−3
2

(
tn−2

∫
|ω|=1

ϕ1(x+ tω) dω

)
, n ≥ 3, 2 ∤ n

π−n
2

2

(
1

2t

d

dt

)n−2
2

(
tn−1

∫
|y|≤1

ϕ1(x+ ty)√
1− |y|2

dy

)
, n ≥ 2, 2 | n.

§7 Fourier transformations of distributions

§7.1 Tempered distributions

Like the smooth functions, f ∈ C∞
0 (Rn) =⇒ f̃ /∈ C∞

0 (Rn), we defined a different space S(Rn) for
Fourier transformations.

So we’ll also define a space for distributions that is closed under Fourier transformations. For
p ≥ 1, denote

Np(φ) =
∑

|α|,|β|≤p

sup
x∈Rn

|xα∂βφ|.

Definition 7.1.1. We say u is a tempered distribution on Rn, if u is a linear map from S(Rn)
to R, such that there exists C and p,

| ⟨u, φ⟩ | ≤ CNp(φ), ∀φ ∈ S(Rn).

Write this space as S′(Rn).
Since C∞

0 (Rn) ⊂ S(Rn), D ′(Rn) ⊃ S′(Rn).

Given u ∈ S′(Rn) and multi-index α, β, the distributions ∂αu, xβu ∈ S′(Rn) as well. But for a
function f larger than polynomials (e.g. ex), fu may not lie in S′(Rn).

This means that u cannot increase faster than polynomials, that’s why it is called “slowly
increasing”.

Check:
| ⟨∂αu, φ⟩ | = | ⟨u, ∂αφ⟩ | ≤ CNp(∂

αφ) ≤ CNp+|α|(φ).

The convergence in S′ is defined as

uk
S′

−→ u ⇐⇒ lim
k→∞

⟨uk, φ⟩ = ⟨u, φ⟩ , ∀φ ∈ S(Rn).
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Example 7.1.2

Let 1 ≤ p ≤ +∞, the functions in Lp are tempered distributions.
Take k s.t. kp′ ≥ n.

| ⟨f, φ⟩ | =
∣∣∣∣∫ fφdx

∣∣∣∣ ≤ ∥f∥Lp∥φ∥Lp′

≤ ∥f∥Lp∥(1 + |x|)−k∥Lp′Nk(φ)

≤ CNk(φ)

Example 7.1.3

Distributions with compact support are tempered. Let K = suppu.

| ⟨u, φ⟩ | = | ⟨u, χφ⟩ | ≤ C
∑
|α|≤p

∥∂α(χφ)∥L∞(K)

≤ C
∑
|α|≤p

∥∂αφ∥L∞(K) ≤ CNp(φ).

Example 7.1.4

The distribution pv 1
x is tempered. Just split the integral to [0, 1] and (1,+∞), then control

each part by N1(φ).

Example 7.1.5

Exponential increasing distributions can also be tempered. Let u = iexeie
x

= (eie
x

)′. Since
eie

x

has norm 1, it is tempered =⇒ u as its derivative is also tempered.

§7.2 Fourier transformations

Definition 7.2.1. Let u ∈ S′(Rn), for all φ ∈ S(Rn), define

⟨û, φ⟩ = ⟨u, φ̂⟩ ,
〈
F−1(u), φ

〉
=
〈
u,F−1(φ)

〉
.

Recall that
∫
f̂g dx =

∫
fĝ dx for rapidly decreasing functions, so this coincides with the Fourier

transformations of functions.
Since

| ⟨û, φ⟩ | = | ⟨u, φ̂⟩ | ≤ CNp(φ̂) = C
∑

|α|,|β|≤p

sup |ξα∂βφ̂|

≤ C
∑

∥x̂α∂βφ∥L∞

≤ C
∑

∥xα∂βφ∥L1 ≤ CNp+n+1(φ).

The Fourier transformation û ∈ S′(Rn).
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Theorem 7.2.2

The Fourier transformation
F : S′(Rn) → S′(Rn)

is a continuous linear isomorphism. Where the continuity means if uk
S′

−→ u, then ûk
S′

−→ û.
Moreover,

∂̂ku = 2πξkiû, 2̂πxku = i∂kû, F−1(û) = u.

Example 7.2.3

The dirac function δ0 satisfies δ̂0 = 1.
For all a ∈ Rn and multi-index α, we have

∂̂αδa = (2πiξ)αδ̂a = (2πiξ)αe−2πia·ξ.

Thus a = 0 yields

x̂α =
(−1)|α|

(2πi)α
δ0.

In particular, 1̂ = δ0.

Proposition 7.2.4

Let u ∈ S′(Rn) be harmonic, i.e. ∆u = 0, then u must be a polynomial.

Proof. By Fourier transformation,

∆̂u = |2πiξ|2û = 0 =⇒ |ξ|2û = 0.

Thus û supports on the origin.

û =
∑

|α|≤N

Cα∂
αδ0 =⇒ u is a polynomial.

Example 7.2.5

The Fourier transformation of pv 1
x .

x · pv 1
x
= 1 =⇒

̂
x · pv 1

x
= δ0.

Hence

i

(
p̂v

1

x

)′

= δ02π =⇒ d

dξ
p̂v

1

x
= −2πiδ0 =⇒ p̂v

1

x
= −2πiH(x) + C.

Since pv 1
x is an odd distribution, i.e. ⟨u, φ(−x)⟩ = −⟨u, φ(x)⟩, we have C = πi.

This tells us Ĥ(ξ) = 1
2δ0 −

i
2πpv

1
x .
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