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81 Fourier analysis

§1.1 Fourier series

This concept comes from the heat equation in physics:
O = Ogpu.

To solve this equation, first we assume u(t,z) = A(t)B(x),

A(t) _ B'(z)
A(t) ~ Bl)

A'(t)B(z) = A(t)B" (z) = =c.
where ¢ must be a constant. Hence we get A(t) = e’. From physics knowledge we deduce ¢ < 0,
then we'll get a solution u(t,z) = e~ £(A, cos(cx) + B, sin(cz)). (We write —c? for original c)
If we put some requirements on boundaries, like u(0,0) = u(0,7) = 0, we’ll get A. = 0,¢ € Z.
Since the equation is linear, any linear combination of solutions are also solutions, thus the
general solution can be written as

+o00o ,
u(t,z) = Z e ™ ' B,, sin(mz).

m=0

Since u(0,z) can be measured in physics, we can solve all the B,,’s, this completely solves the
problem in physics.
This derives a problem in mathematics: Given a function f(x) on [0,27], is it always possible

to write f(x) as series:
—+oo

f(z) = Z (A, cosmz + By, sinma).

m=0

First we assume f(x) is written as this series, then

2m 0 2m 2m
f(x)sin(kz) dx = Z A / cos(ma) sin(kx) de + By, / sin(maz) sin(kx) do = 7By
0 o 0 0

This can be computed by tricks of trignometry functions.
Similarly,
2 Ay - 2w, k=0;

() cos(kx) dx = { Am kA0,

0

To write these coefficients nicely, we’ll generalize it to complex fields:

Definition 1.1.1 (Fourier series). Let f be an integrable function on [0, 27] or [—, 7], define the
Fourier series of f to be:

27
f(k) = % i f(x)e * e dz, kel
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Thus we get

F@)~ ) fk)e.
kEZ

When f is periodic on [0, 27] (meaning that f(0) = f(27)), we can just view it as a periodic
function on R.

Fourier series write functions in the “frequency space” to reveal the hidden properties in the
oringinal space.

§1.2 Fourier series of smooth functions

Theorem 1.2.1 (The uniqueness of Fourier coefficients)
Let f be an integrable function on [0, 2x], and f(k) = 0, then f = 0, a.e..

Proof. Since polynomial functions can be approximated by trig functions uniformly, thus
2m
f@)P(z)dz =0
0
for any polynomial P(z), hence f = 0,a.e.. O

This means that the operation of taking Fourier coefficient is injective.

Corollary 1.2.2
If f is continuous on [0,27], and Zkez|f(k;)| < 400, then the partial sum Sy(f)(z) =
2o k|<N f(k)e™* uniformly converges to f(z).

Proof. Let F(x) =3, 4 f(k)e™®. Then F is continuous and periodic,

R 1 [ ,
F(k)=— F(z)e ™ dg
2 0
1 Z/2Tr . . "
= — fhe" e " da
2m iz Jo
= f(k).
Therefore by continuity F(x) = f(x). O

By Riemann-Lebesgue Lemma, f intergrable —>

2m
lim f@)e*™de =0 = f(k) = 0.

k—o0 Jq

Lemma 1.2.3

fect = |fB) < Sy F€C? = |f@)| < =502
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This implies that if f € C?, Sy(f)(z) uniformly converges to f(x), i.e. Sn(f) = f.
When f is not so nice, since

Sn(H)@)= 3 flk)elr

|k|<N

N 1 2 ) .
> o | f@e e dget
R— 2w /0

N
1 2m

— [ & D e*ag

2T
0 k=—N

Let Dy(x) = YN ethe = 28422 (\wWhen o — 9kr, Dy(z) = 2N + 1) called the Dirichlet
kernel. ’

Then Sy (f)(z) = 5= f * Dy, where x is the convolution.

Recall the results of approzimations to the identity, if K. is an approximation to the identity,
we have lim._,o f * K. = f(z) for the Lebesgue point of f.

But unfortunately, Dy is not an approximation to the identity:

27 1 1 27 "
/o DN(x)deQ— Z/o e dr = 1.

27 T
|[k|I<N

Also |Dy(z)] < 2N + 1, but |Dy(x)| < AN~!|z|~2 doesn’t hold.
Hence we need to introduce a different tool: Fejer kernel.

§1.3 Fejer kernel

Consider the Cesaro sum

1 ko /* D
on(f) = N(So(f)+"'+51v—1(f))— Noor
This will leads to the Fejer kernel:
N—-1 . 1 . N 2
1 sin(k + 3)x 1 (sin5x
FN(x):NE (.7952):* — .
P sin 5 N sin 5

(When z = 2k7, Fx(z) = N)
We can prove this Fejer kernel is indeed an approximation to the identity. Hence we get

f integrable = lm || Fy * f — f||z1 =0,
e—0

and for Lebesgue point of f we have

lim oy (f)(x) = f(2).

N—00

Note that the condition of approximation to the identity is too strong, as it applies to every
L' function. When f has more regularity, we can loosen some conditions of the kernel.

Definition 1.3.1 (Good kernels). Let K n(z) be continuous functions on [—m, 7], Kn(z) is a good
kernel if:
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o [T Kn(z)dz=1;

e M > 0 s.t. .
/ Ky (2)|dz < M, WN;

e V>0,
lim |Kn(z)|dz = 0.

N —+o0 5<|z|<m

Theorem 1.3.2

Let K be a good kernel, f is a bounded integrable function on [—m, 7], if f is continuous at
x, we have

i+ Ky (@) = f(@).

Proof. Let the bound of f be Mj.

s

f*Ky—f= (f(z—y) = f(z)Kn(y)dy

—T

:/ If(x—y)—f(x)llKN(y)\dy+/ 20| Ky (y)| dy — 0.
ly|<o ly|>é

Corollary 1.3.3

Let f be a continuous periodic function on [0, 27],

1
—fxFy 3 f.
2

Proof. Since Fy is a good kernel, f continuous = f uniformly continuous. Repeat the proof

above and we’ll get the result. O
1 Nl ‘ 1 ‘
Fy(a)=—> Y e =— " (N—[e'.
N N
k=0 |1|<k [|<N-1
Thus

ox(De) =g (Fx s N = 3 (1= 5] foer=

k|<N-1

Combining with our corrolary, we can approach any continuous function uniformly using trig
functions.
Now we assume f integrable and periodic on [—7, 7], WLOG ffﬂ f(z)dx = 0. (otherwise

minus a constant on f, only f(0) will change)
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Let F(z) = [, f(t)dt, F(z) is continuous and periodic on [0, 2]. Consider the Fourier series
. 1 27 2m 1 2m
FO)=— F t)ydtder = — 2 —t)dt = —— tf(t)dt.
0 2W/g war=o [ [Trwatar= - [T soer-na=- [T
" 1 27

F(z)e”** dg

2m x
/ f@t)dt- e ** dx
0 0

1 2m 2m )
= — f(t) / e~k dg dt
0 ¢

3
Ny

S~—
I

2

2
121 — ekt 1,
:27T f()ﬁdt:%f(k)-

Now we have

%(FN «F)0)= > (1 - ]If)) F(k)

[kI<N-1

Lo K f(k)
=5 [ tf@)di+ > <—N) -

0 1<|k|<N -1

S Oﬁtf(t)dt—i— Z @—i— Z isgn(k:)f(k).

2 7
1<|k|<N—1 1<|k|<N—1

Since f(k) — 0 (by Riemann-Lebesgue), and = (Fn = F)(0) = F(0) =

Ak . 2
Ry

I<[k|<N

Thus we have a stronger condition on f(k).

4 N
Theorem 1.3.4 (Fatou)
Let
0, |k <1,
1
—_— k>2
ar = § 2ilogk’ -7
1
- k<=2,
2ilog |k|”
Then there doesn’t exist an integrable function f on [0, 27] s.t. f(k) = ax.
. J

Proof. We've proven f(k) — 0 and 3, % converges, while {ay} does not satisfy these condition.
O

§1.4 The convergence of Fourier series

In this section we come to the main problem of Fourier series, i.e. when and how does the
convergence Sy (f)(z) — f(x) holds?
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Lemma 1.4.1 (Localization lemma)

Let f be a integrable periodic function. For all zg € [—7, 7], Vd > 0,

lim Dn(y)f(z—y)dy = 0.
N=+oo Js<ly|<n

Proof.
sin(N + 1)y 1 ) 1

/ (.7342)f(330 —y)dy < — / sin <N+ 2) yf(ro —y)dy — 0.

lyl>s Sy Sy Jlyl=s
Where the last step is by Riemann-Lebesgue Lemma. O

Therefore
2wSN(f)(2) = Dy * f = Dn(y)f(z —y)dy + Dy(y)f(z —y)dy,
ly|<é ly|>8

§1.4.1 Point-wise convergence

4 o )
Theorem 1.4.2 (Dini)
f same as above, if there exists a constant ¢ and § > 0 s.t. at x¢ we have
)
- -2
/ [f@o—t) + flwott) —2d 0 .
0 t
Then limy 400 Sn(f)(z0) = ¢
. J
Proof. By Riemann-Lebesgue,
1 s
Sn(N)@o) —e=o— [ Dn()(f(z —y) —c)dy
I 1
== Dn@(flz—y)—c)dy+ - Dn(y)(f(z —y) —c)dy
2m ) s 21 Jiy2s
1 [2tsin(N+ )t f(x—t)+ flz +1) —2c 1
= — dt + — D —y)—c)d
o e t tap [ DG —ody
— 0.

Because the first term is the integral of a product of trig function and L' function, the second
term approaches 0 by lemma. O

There’s a counter example which is continuous function whose Fourier series doesn’t converge to
itself at one point. It’s known as du Bois-Reymond counter example.
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Example 1.4.3
ikx
Let f(z) = 225 55

) N . . cos(N+2z)—1 N cos(k—3)z—1
Z €Zkz - Z sin kx - COS 2 1- N - Zk:Q k(k—1)
k k 2sin £
1<|k|<N k=1 2
9 wn2 25sin? 7 +1)z 2 sin? (£—D)z
_ 2sin” 7 + + Zk 2 T R(k—1)
2sin §

When xz > 6§, we can prove Sy(f)(z) — f(z). When z < §, since sin® 21y <

min{1, (2£ S 2k—1 )21

N 2sin?( -z
D =LY

k=2 k<x—1

(2k 1
Z k ) 22 a:_1+ca:§2cx.

Thus Sy (f)(z) < M, where M is independent of z and N.

Another approach is to realize } ;<1< n el,:x as 3 [ (Dn(t) — 1) dt. (complicated)

'ka

Define wk (z) = Zl<‘k|<K & Let K; = 3" Define
pi(ka+2K,x)
Zl “wr (@ Zl D
1<|k|< K, K

We can check that f is continuous and periodic. Since K; < k + 2K; < 2K, this is a Fourier

series.
By the uniformly bounded property of wi (z) (proved in the example above),

Kzo lp—1

S, (NO) =15* Y Z 2w (0) = I In K, + O(1) = o ln 3+ O(1) 4 £(0).
k_—l
This counter example tells us that continuity can’t ensure the convergence of Fourier series.
4 )
Corollary 1.4.4
If there exists constants 0 < « <1, ¢ >0, >0 and ¢4, c_, s.t.
|[fmo+t) —cp| +|f(xo—t) —c—| <c-t*,V0 <t <.
Then Sy (f)(zo) — ZE=.
In particular if f is periodic and C*-Holder continuous (« = 1 corresponds to Lipschitz
continuous), then Sy (f)(z) — f(x),Vz € [0, 2x].
.

Proof. Just check the conditions of Dini’s theorem.
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Theorem 1.4.5
Let f be an integrable function, |f(k)| < |Q, then at Lebesgue point z of f we have

Rl
Sn(f)(z) = f(a).

Proof. Recall that on(f)(x) — f(x) for Lebesgue points, and let by = Sx — Sk—_1, by a homework
problem in first semester, we only need to prove kb is bounded. This follows immediately from

the condition |f(k)| < % O

Now we move on to the BV functions. Since BV functions can be decomposed to increasing
functions, we only consider increasing functions f. WLOG f(0+) = 0, by localization lemma, (we
change (N + ) to N for simplicity)

5 5 /. ) 5 .
/ Sln]\t/'tf(t) dt:/ (smNt B stht> f(t)dt+2/ sthtf(t) i@t
0 0

. 1
S1n 3 S 3 3 0

By Riemann-Lebesgue lemma we can see the first term is at most C/|f(9)].

5 NG .
sin Nt sint t
/0 t f(t)dt:/o t f<N>dt'

Next we divide this integral to [2km, 2(k + 1)7]:

2407 gint ¢
/ Tf(ﬁ) dt
2k

T 2km+t 2km+m+t
/sint SR SR dt
0 2km +t 2k + 1w+t

T (ﬂ”%) —JCR) | (2 )
0 2k + )7 2km(2k + 2)7

: ‘f (55r) - (21]?)‘ IO a2y

§1.4.2 Uniform convergence

4 )
Theorem 1.4.6 (Jordan)
Let f be a real BV function on [0, 27], then Vz( € [0, 27] we have
. _ flwo+) + fwo—)
i Sy(f) (o) = R
Moreover if f is continuous, this convergence is uniform.
- J

Proof. We only prove the uniform convergence since the first part is nearly trivial by now.

Let g(t) = f(z +t) + f(z —t) — 2f(x), then g is uniformly continuous on [0, 27|, and g is also
BV since the total variation is independent of x.

The computation is too complicated... O

In fact this theorem can be proved similarly to Theorem 1.4.5, since we can prove f (k) < % for

BV functions.
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§1.4.3 Absolute convergence

Theorem 1.4.7 (Bernstein)

Let f be a C* continuous, « € (3, 1], then Sx(f) is absolutely convergent, i.e.

S 1f (k)] < +oo.

kEZ

Lemma 1.4.8 (Paseval's equality)
Let f be a C* (complex) function,

27
o | IrPde =TI

kEZ

Proof. Formally, since

f=2 et = |7 =3 f) fer D,

thus

o 2 4y — AV QTrei(k—Z)x = or Frpy 2
s =¥ faa [ dw =27 3" |f(k)

Now we come to the strict proof. We have Sy (f) = f, thus
l/ Sw(f)Fdz=2r 3 |f(k)
0 |k|<N

which implies the result by taking the limit N — co.
In fact, this also holds for f € L? because

21 ) 21T ) . )
- S dz = dr — k
A f Mm:vélﬂx 2 3 1f (k)

|k|<N

Proof of Bernstein’s theorem. Let f(z) = 3 f(k)e™™®, then

flx+h)— Z f(k)e™™ . 2isin kh.

By Paseval’s equality,

2m
Sk Pasint k= o= [ i@ ) = fa = mfFar < Cla

Let h = 2,,%, we have 4sin® kh > 2, where 2P~1 < k < 27,

— Z | < C|h|2a 02*2;004‘
k=2r—1

10
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2? 2? 2
~ ~ 1 P
= > |ftk)l < ( > |f(k:)|2> (2012 < ¢ .29k = .27 2p,
k=2pr—1 k=2pr—1
O
Remark 1.4.9 — When o = %, there are counter examples.

[
Theorem 1.4.10 (Zygmurd)
Let f be a periodic C* function, if f is BV then Sy(f) is absolutely convergent.

.

Proof. Since

£+ D)) = F((n = D) =[S F(k)e2isin khf

= Z |f(k)[*4sin® kh + Z F(k)f(D)e™* =R gin khsin Lh.
k£l

Let h = %’r, and take the sum with respect to n: When k # [, Zﬁ:ol em(k=Dh — (. (roots of unity)

(When n | k — I, we need a different approach)

N-1
D 1f(n+1h) = f((n=Dh)[> = N> |f(k)[*4sin® kh.
n=0 k
Hence
R 1 N-1
> If(k)Pasin® kh < ~ o D If((n+1h) = f((n = DR)| < Ch*H| f|| v
k n=0
The rest is the same as the proof of Bernstein’s theorem. O

§1.5 Hilbert spaces

People discovered that if we want the pointwise convergence of the Fourier series, we need to put
many requirements to the function. Therefore we wonder if we can proof some results for general
functions.

Recall that Parseval’s equality gives a map from L? space to [ = {{ax}rez : D_ |ax|? < +o0}.
In fact this map is bijective by Cauchy’s law of convergence. This realizes L? as a vector space of
countable dimensions, hence we introduce the general theory of Hilbert space.

Definition 1.5.1 (Hilbert space). A Hilbert space is a separable complete inner product space.
Recall that separable means it has a countable dense subset.

The space L?([0,27]) is a Hilbert space since we can assign the inner product

2

(f.9) = fgdz.

0

By Holder’s inequality, it’s easy to check L?([0,27]) is indeed a Hilbert space under this inner
product.

11
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Example 1.5.2

In R?, the usual inner product gives the structure of Hilbert space.

Also L?(X) is a Hilbert space for any measure space X, with inner product (f,g) =
Ix fodp.

Similarly the space 12 we've just defined is also a Hilbert space.

Let H be a Hilbert space. We say two elements f,g € H is orthogonal if (f,g) = 0, denoted
by f L g. In this case we have ||f + g||> = || f]I*> + ||g]|>

Recall the definitions of orthogonal and orthonormal basis in finite dimensional spaces in linear
algebra, we can also generalize them to Hilbert space:

Definition 1.5.3 (Orthonormal basis). If there is a countable set {e;} s.t. ||e;]| =1, ¢; L e; and

the vector space spanned by {e;} are dense in H, then we say {e;} is an orthonormal basis of
H.

Example 1.5.4

InRY ex = (0,...,1,...,0) form an orthonormal space, where the 1 is in the k-th entry.
In le, {ek}rez is also an orthonormal basis. By applying Fourier transformation, we have
{\/%e””} is an orthonormal basis of L2([0, 27]).

In L?(R), there is an orthonormal basis

{cn?
k

where ¢, = /72%k!, Hy(x) are Hermite polynomials:

67%12Hk(13),k > 0},

> dF 2
Hy(z) =¢€” @(6_93 ).

[
Theorem 1.5.5
Given an orthonormal system {ex} on a Hilbert space H, TFAE:

(1) {ex} is an orthonormal basis;
@ IfeH, fLe, = f=0;

(3) For all f € H, Sy(f) — f (the convergence is on norm distance induced by the inner
product), where Sy (f) = Eﬁvzl(f, €;)e;.

(4) For all f € H, the Paseval equality holds:

1112 :Z|(f,€i)\2-
N - Y

Proof. (1) = Ve >0, Jay,...,a; € Rs.t.
k
If = aiei] <.
=1

12
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Hence
k k
£+ ai =2> (fre)ai <e.
i=1 i=1

Therefore f L e, = f=0.
2) = )

N N
1f = Sn(NIP = IFIP+ D 1(fee)l? = 2D I(fre)* = 0.
i=1 i=1

Hence [|f]|* > 3572, [(f, e:)]*.
Note that Sy (f) is a Cauchy sequence (D
For any j, take N > j,

(f = Fres) = (fre5) = (F = Sn(f),e5) = (Sn(f) e5) = [(f = Sn(f),e)| < I = Sn(f)llllesll.

This gives f = f by (2).
(3) = (4) is trivial, and (4) = (1): Vf € H, Sy(f) — f, therefore the linear combination
of {ex} is dense in H. O

n

"o |(fie)? = 0), it must converge to some f.

Theorem 1.5.6

All Hilbert spaces have orthonormal basis.

Proof. Since H is separable, there exists {fi} dense in H. WLOG {fx} is linearly independent.

We follow the process of Schmit orthogonalization: Let e; = Hj‘%l\

If fro1 — Zle(fkﬂ, e;) # 0, let exy1 be the normalized orthogonal vector. O
4 )

Theorem 1.5.7 (Riesz)

Let T be a linear map from a Hilbert space H to R. If there exists a constant c s.t.

T (z)| < clzl.

Then 3z¢ € H s.t. T(x) = (x, x0).

. J

Proof. Consider Hy = ker f. It’s a closed linear subspace of H since T is continuous.

There’s a unique decomposition x = z¢ + x1; where xg € Hg, x1 L Hp: let w € H s.t. T(u) =1
and v L Hy, 1 = T(z)u.

TODO O

§1.6 Uniform distribution problem
Definition 1.6.1. Let {&;} be a sequence on [0,1), if Va,b € [0, 1),

o HEZ 016 €0t} _

n—00 n

b—a.

We say {{;} is uniformly distributed on [0,1).

13
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Example 1.6.2
Let {z} = x — [z], then for any ¢ € Q, {{kq}} is not uniformly distributed.

The sequence & = {(HT‘/g)k} is not uniformly distributed, because Fj11 = (=5

(A5

)k, so &, converges to 0 as k — +00.

4 )
Theorem 1.6.3 (Weyl uniform distribution law)
The followings are equivalent:
o {&} is uniformly distributed;
e For all Riemann integrable function f,
1 !
lim — = dz.
Jim = f(&) /0 f(z)da
k=1
e For all I # 0 we have
: 1 - 2mil€ _
nh%rrgo <nZe k) =0.
k=1
- J

Remark 1.6.4 — The generalization of this theorem is Birkhoff ergodic theorem.

Proof. 1t’s clear that (2) can imply the other two by taking f = x4 or f(z) = e2rite,
(1) = (2) : For o > 0, consider a partition o =0 < 21 < --- < ay =1, |[Ti41 — ;| < 0.

Define f; and f_ as
N-1

f+:Z sup  f(Y) " X[ap,zpia]-

k=0 YE[Tr,Trt1]

and f_ changes the sup to inf.
We have f_(x) < f(z) < fi(z), thus by uniform distribution,

1 !
A ; Xiab) (k) =b—a= /O X[a,) (%) dz.

By linearity we have

n 1 1
Jﬂﬁ;H@FAAwM%AﬂWM

(3) = (2) : Since €>* is surjective, and by conditions we have

1< !
- Z ezm'lgk 5 0= / e2ﬂ'ilw dz.
"= 0

By linearity, the polynomials of trig functions also satisfies (2). Thus C? functions satisfies (2).
(Its Fourier series uniformly converges to itself)

To prove (1), we only need to prove the step functions x(,j satisfies (2), which can be approx-
imated by C? functions by f_ < Xfa,p] < fe- O

14
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Example 1.6.5
Given an irrational number o, then &, = {ko} is uniformly distributed on [0, 1).
We can prove it using Weyl’s law:

n 2milo 2wil(n+1)o
1 e — eZmil(n+l) 0
— @ = — il — 0.
n= n 1 — e?muo

Example 1.6.6
Let 0 € (0,1), & = {ak?} for some a # 0. {&} is uniformly distributed since (set b = 27la)

Proof. By Weyl’s law,

n . n k+1 _
E e27\'7,lalc E / ezbk o ezb:r dz
k=1 k=1"7k

Note that [e?®*” — =" | < |b|(z — k) is bounded,

< +

n+1 )
/ ezbz dx’
1

o k4l ntl  qgiba”
LHS < E bl(x? —k%)d _—
S_k—l/lc S Jdo+ /1 ibz? 1o
- 1
< E+1)7 =)+ —|
<D (k1) k) ]

b
Il
—

< |bl(n+1)7 +¢ <(n + D) 14 /n+1(1 —o)z™°? dx)
< 1bl(n+1)7 +c(2(n+ 1) +2) = o(n).

While &, = {aInk} is not uniformly distributed by similar computation. O

82 Fourier transformation on discrete sets

§2.1 Basic theory

Given a positive integer N, let Z(N) = {0,1,...,n — 1} denote the residue class modulo N.
Let V be the space of complex value functions on Z(N), it’s an N-dimensional vector space
over C. We can define the inner product on V' to be

1

(f.9) = 3 F)g(h)
k=0

. 27i . .
In particular e ¥ ¥ is an orthonormal basis of V.

Therefore we define the Fourier transform to be

1 N-1 R i R - N—1 -
fla) = N f(k)e ]7\',‘kz7 f(k)=N(f,e ﬁ’kz) — Z f(:z:)ef%kz
k=0 o

for functions f € V.
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Note that the formula coincides with normal Fourier tranformations.
Futhermore, we can define the convolution on V,

N—-1

frg(@)= ) fle—k)g(k).

k=0

Similarly we have f + g(k) = f(k)g(k).

The good thing of discreteness is that everything is finite, so we don’t need to check convergence
or commutativity.

In fact we have

k

N—1 N1
s | (4)3(4)| = sup [F= 0] = smp (D e g)(x)ezm> 5
x=0

N—-1
> fa—ygy)
y=0

=0

which means that the “L°>” norm is less than or equal to the convolution’s “L'” norm.

Proposition 2.1.1

Convolution preserves inner product, i.e. (f, J)=N(f,g).

Proof. Just a bunch of computation. O

In particular, we have Paseval’s equality:

Theorem 2.1.2
Let f eV,

N-1 N-1
1

N
k

<
o
Il
<

§2.2 Roth three-term arithmetic sequences

-
Theorem 2.2.1 (Roth)
Let A C N, define the density of A to be

<
ﬁ(A) = lim sup w

n—00 n

If 5(A) > 0, then there exists a three-term arithmetic sequence in A, i.e. Jz,y,z € A s.t.
T+ z=2y.
. J

The idea is to prove a following weaker statement:

Proposition 2.2.2

=il
For VO < § < 1,if N > ¢<™” | then for all A C {0,1,...,N — 1}, if |A] > §N, there exists a
three-term arithmetic sequence in A.

16
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Proof. Assume by contradiction, take the smallest N s.t. 30 < d <1, N > ™ ' and |A] > 6N
without arithmetic sequences.

Step 1. Let B = An[4, 2N) We'll prove |B| > 2N.

Otherwise either [AN [0, §]| or [A N [2Y, N]| is at least 26N, WLOG |AN [0, &]].

Therefore N 3
A F N
| 0[0,3]|> J . N 95 05.
0,5 - N +1 - N+38 9
10 5y—1
Since [[0, §]| > & > %6650 , it is larger than ¢ ° "

Step 2. If 2,2 € B, a:+y = 2z(modN), then a:+y =2z (r+y—22=0,N,—N, a simple
inequality will yield the result)
Hence

0= Z Z Z Z e 28 ik (z+y—22)

zeBxzeB yGA
N-1

1 x )
— N Z 67%1k(72z Z — 2T ika Z e~ 2riky
k=0 z€B r€EB yeA
1 N-1
= & 3 G 2RTHRITA (R,
k=0

Note that xa(0) = > xa(z) = |A], set ¢ = maxi<p<n—1 |xa(k)|.

=

¥ O TB(-2R)TB (T (k)

[y

1
—|B]*|A| =
~BPIAl

ol
,‘_.»—-

IN
2=

XB(=2k)xB (k)| c

b
Il

1
N-1

I
2=

(1T + 120 ) o

k=1

Now by Paseval’s equality & S [¥5 (k)2 = [B] and Y2 |¥G(~2k)? < 2505 (K),
N—
3 3
|< 2 E == )
\B\ |A] < 2 2 2N|B|c

Therefore kg # 0 s.t.

21 2156 52
> —— - - _
[xXa(ko)l IBHA| 3N4N 6N = —N

Step 3. 30 < d < VN s.t. dkg = co(modN), 0 < ¢y < v/N.
Let lp = mln{[GcO], [2=1]}, consider

P=1{0,d,2d, - ,lod, N—d,N —2d,--- ,N — lpd}.

We know |P| > 2lp+ 1> 2[‘F] +1, colp < ¥

17
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Since | (ko)| = |(xa — ¢)(ko)| (ko # 0),

lo 1
Zez”koldflmz ( >Zlo+1.
l1<lo
We write
2
N(lo+1) < |(xa — ) (ko)Xp (ko)|
N—-1|N-1
< (xalz —y) —c)xp(y)
z=0 | y=0
N—-1|N—-1
= (xa()xp(z —y) —cP|)|.
z=0 | y=0
Letc:W > ¢, then

y)xp(z —y) — cN|P| = |A[|[P| = ¢cN|P| = 0.

HMZ

9954

There exists xg such that
62
AN (zg — P)| = ZXA y)xr(zo — )>C‘P‘+ (l0+1)
Note that o — P is a subset of Z(N) consisting of at most 2 arithmetic sequences of common

difference d, say xg — P = P U Po, WLOG |Py| > |Ps|, P = {0 —p > 0}, P» = {9 — p < 0}.

e When |P;| < 2—2|P|, note |P| =2y + 1,
52 52 52
|AﬁP1\>6|P|+ (lo+1) 8|P|Z (5+@ |P1].

Since AN P; does not contain arithmetic sequences, and

47 VN
[P > IPI e (2l

6

1 50571 50(s492)—1
> —\/ N> — > ef R
) — 16 - 16

We've find a smaller N’ = |P;| and §' = + 2—; contradicting the assumption.

o |PI|>|Po| > &|P|,3T (T =P or T = Py) sit
52
ANT| > (645 )T
Antl = (54 5;) 1]

2
By similar process in previous case, we can prove N’ = |T| and §' = § + 3—4 suffices.

18
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§2.3 Fourier transform on finite abelian groups

The set {0,1,..., N —1} can be viewed as a cyclic group of order N. In this section we’ll generalize
the idea to finite abelian groups, which can be viewed as Z-modules.

Let G be a finite abelian group, here we use the multiplication convention of group operation
and denote the identity as 1. The complex-valued functions defined on G form a vector space V/
of dimension |G|.

Define the inner product

(1.9) = g3 3 @@,
aeG

The next step is to find an orthonormal basis. In the case of cyclic groups, this was easy; In general
cases, recall that G is isomorphic to a direct product of cyclic groups, so we can do similar things.

However, we won’t proceed so here as this approach is somewhat complicated. Instead, we’ll
use the charaters of G.

Definition 2.3.1 (Characters). Let e : G — S! be a homomorphism, i.e.
e(ab) = e(a)e(b), Va,beq.

We say e is a character on G. The constant function 1 is called the trivial character.

4 N\
Theorem 2.3.2

Let G be a finite abelian group, then all the characters on G form an orthonormal basis on
V. Moreover if e is a nontrivial character, we have

Z e(b) = 0.

beG
\- J

Proof. If ey # ey are two characters, then there exists a € G s.t.

ei1(a)ex(a) # 1.
(since e1(a)er(a) =1 for all a € G)
Now
1
(e1,e2) @ z,ezgel(b)GQ(b)

1

= @l Z)EZGel(ab)eQ(ab)

= é Z e1(a)ez(a)er(b)ea(b) = e1(a)ea(a)(ey, ea).

bed@

Thus the characters are pairwise orthogonal.

Hence it’s sufficient to prove the number of characters equals |G|. (Actually the characters
form a group G called the dual group of G.)

By the classification theorem of finite abelian groups, G = G; X G3 X - -+ X G, where G;’s are
cyclic groups. Since we can prove Z, ~ Z, and G x H ~ G x H, it’s clear that |G| = |G|. (In fact
this is a homework problem of my algebra course) O
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Now all the preparations are done, we can define the Fourier transformation:

b)e(d).
f=3 e fre |G|Zf

ecG beG

Similarly, (f,9) = ¥,c f(€)3(¢). This implies (f, ) = Y.cq (o))

The convolution is defined as
(fx9)( > f(b
IG |
bel

The goal of developing Fourier transformation on finite abelian groups is to prove the famous
Dirichlet’s theorem, which is often used in high school math olympiads.

Theorem 2.3.3 (Dirichlet's theroem)

Let g, ! be two coprime integers. Then the arithmetic sequence {{+ngq}22; contains infinitely
many primes.

The proof is very long, so sometimes we’ll skip some of the computational details.
Consider the finite abelian group

G={l1<n<qlged(n,q =1} =7Z;.
For all e € (A?, we can extend e to Z periodically, namely

(m) = {e(n)7 n = m(modq)

0, otherwise.

We call this x Dirichlet character, satisfying x(mn) = x(m)x(n).
Define the [-identicator &;(n) = X{n:qjn—1}- Apply the Fourier transform on d;,

Thus

For s > 1 and p prime,

a Y %:|G|Z(5l(p>:ZZX(Z)?((Z?):ZWZX@)'

p pe ~
p=l( mod q) p P xeG x€G

Here the sum Zp is taken over all primes not dividing g. By putting the trivial character outside

the sum, we get
DRI DI Z My

p x€G x#1

Now we’ll prove two things:
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ozp%—>+ooass—>1.

X p) is finite.

e For nontrivial character x, >,

These two things will imply Epzl( — 400, which is sufficient to prove Dirichlet’s theorem.

mod q) 7

Lemma 2.3.4

Taking logarithm on both sides,

—2s5
—s —s p
lnC(s):—Zln(l—p ):Zp _|_Z R
P P P
Since for k > 2,
—ks
p 1 —ks c 1—ks
< — < =9
ko ke k
p n>2
But since ((s) — 0o as s — 1+, > p~% = +o0c. =

Remark 2.3.5 — This implies Zp% = +00, which is an analytic proof of infinitely many
primes.

The second step is much harder. For character x, define £ function

_ i x(n)

Since for Dirichlet character x, |x| < 1, so L(s, x) is convergent.
The computation below may not be strict, they just provide a perspective.
By Euler’s formula,

o=l

InL(s,x) = Zlnl— )%ZX(p)

and we need to prove it is bounded as s — 1+.

Note that .
Z Z e(n) =0 =

neG

<M, VYmEéeZ.

>

Thus by Abel’s criterion L£(s, x) is convergent for all s > 0.
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Theorem 2.3.6
Let x be a nontrivial character, £(1, x) # 0.

We'll prove this later. As for now, we assume it is true.
We take the s derivative of L(s, x),

,CI(S,X) _ Z X(?)

Inn.
n

We need to check RHS is uniformly convergent for s € [4,2], V¥§ > 0, so that the equality holds.

1L(s,x) = 1] = | (nl - (n—il)) > x| < m2e.

n=2 I<n

Similarly we can prove |L£'(s,x)| < M275.
Next we're going to explain why we’re able to take logarithm. We can define

- +oo ﬁ/(t,X)
InL(s,x) = —/s 2 dt

When t > 1, L(t,x) # 0. Now we'll check e™#(5X) = £(s, ). This follows by taking derivatives.
When s — oo, they clearly equals to each other.
TODO

Proof of Theorem 2.5.6. TODO O

83 Fourier transformation on R"

Recall that Fourier transform is to express a function by a linear combination of orthonormal basis
of a Hilbert space (like L2([0,27])).
In R™, when function f has a compact support,

7o) = /K f(x)e 27 da.

Thus by taking K to the limit, we’ll get Fourier transformation on R™.

Definition 3.0.1. For f € L*(R"), define

F)E) = F€) = (z)e 2" dg.

Rn

The number £ is called the frequency, note the difference that £ is continuous instead of discrete.
Also we have the inverse transformation,

FH)(x) = }/”(x) - L. F(€)e2™i7E g,

Observe that
IfO < / |f(z)|dz = [ fl|L:
R’n
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Theorem 3.0.2 (Riemann-Lebesgue lemma)

For f € L', R
lim =0.
Jim 7o)l
Proof. Take f, — f in L' s.t. f, has compact support. O

Similarly for convolution we have

F*9(6) = F(©3(&).

Since f,g € L', their convolution is also in L', thus by Fubini’s theorem it’s the same as be-
fore.

Remark 3.0.3 — Recall that we’ve proved there doesn’t exist a function e s.t. ex f = f for
all f. Here we can use Fourier transform to give a simple proof: e* f = f = €= 1, which
contradicts with Riemann-Lebesgue lemma.

Note that fis not necessarily in L! space. If we look at the differential properties of f,
"T:(Tlof)(é) = €2ﬂixogf(§)7 where T-’Kof = f(x + 330).
F(Dxf) = [N=Dr-1(F(f)), where Dy f = f(Az).

e More generally, let A : R™ — R”™ be a nondegenerate linear transformation,
F(f o A)E) = det A F((A™)'E)

8/1;,0(5) = 2mi&rp(€). This can be proved by integration by parts.

(—2mizpp)(€) = e, B(€). This implies that f € C°(R?) = [ € C®(R™).

The smooth properties of physical space is equivalent to the attenuation properties of fre-
quency space.

The downside of Fourier transform is that whenever f € C§°, we must have ]?gé cge.

o~

Remark 3.0.4 — The proof of this fact requires knowledge of complex analysis. Let f(z) =
J f(x)e=?™*% dz which is complex analytic, f € C§°(R) means it is zero on both ends of the
real axis, so by maximal principle, f must be zero on the whole complex plane.

Therefore we need to introduce a new function space:

§3.1 Schwartz space
Definition 3.1.1. If f € C'*° satisfies

2o ((,fx)ﬁ i)

If f € S(R™), f € S(R™) as well.

sup < 400, Va,pf,

zER™

then we say f € S(R™).
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Proposition 3.1.2
Let f,g € S(R™), we have

[ F©9©d= [ e

Rn

Proof.

|| s aage) ag

R

s ([ a@erac) as
) da.

()
[ @it

Rn
O
Theorem 3.1.3 (Fourier transform of Gaussian distribution)
Let g(z) = e~I*I* on R™, we have
—T 2
F(9)(€) = g(§) = ™"
Proof. The one—dirznensional case is easy to proof using complex analysis.
Let G(&) = €™ §(€) on R. Then G(0) =g(0) = [, g(z)dz = 1.
G'(§) = ™ (2n€)g(&) — " i / ¢TI (~2miat)g(€) = 0.
R
TODO O

Theorem 3.1.4
Let f € S(R™), then F~1(f) = f.

Proof. Note that here we can’t simply apply Fubini’s theorem as the function may not be integrable.
Alternatively, we’ll use Gaussian distribution to approach f. ,
For & > 0, define g.(z) = e~ %g(c~ ). Where g(z) = e~ "1*I". Hence

Flg:)(€) =) " g(e€) = g(e€).

Flg(e) (@) = e %g(e ™ z) = ge(2).
We have g. is an approximation to identity,

lim||f # ge = fllzr =0, lm(f*ge)(x) = f(x).
Therefore for function f * g.,
F(f g€ e = [ Fla)guta)do = (7 9.)(0)
R™ R™
TODO -

24



Analysis 111 3 FOURIER TRANSFORMATION ON R™

Theorem 3.1.5 (Plancherel’s formula)
Let f € S(R™), then || f]|z2 = || f]z2-

=

Proof. Let g(z) = E Jan F(©)™ 26 dE = F1(f)(€). We have

~

fode= [ fgde= [ fFF(f)dz=|f[l7--
R R Rn
O
Theorem 3.1.6
F*=id
Proof. Since
F) =F 0O = [ fapetm=o,
we have F2(f)(—€) = f(€), hence F*(f)(§) = f(£). u

Note that F : S — S is a linear map, we can talk about the eigenvalues of F, by F* = id we
know the eigenvalues can only be +1 or +i.

N
Theorem 3.1.7 (Poisson summation formula)
Let f € S(R), we have
Z f z + 7’L Z f 27r7lnac.
In paricular when z = 0 we get 3 f(n) = 3 f(n).
. J
Proof. Let F(z) = Y/ __ f(z+n) is a periodic function, hence F(z) = 37> __ F(n)e2mine,
Note that
1
F(n) :/ F(z)e 2™ dy
0
1 +oo ) N
= / Z flx+Ek)e 2™ dy = f(n).
0 k=—oc0
O
. . - )
Theorem 3.1.8 (Heisenberg uncertainty principle)
Let f € SR), and ||f||z2 = 1.
dr|zfllz - [1€F(E)ll2 > 1.
The equality holds iff f = Ae—B , B> 0,42 = v2Br—1. More generally we have
ar|(x — z0) fllz2 - 11§ — &) F(E) 2 > 1.
\ J
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Proof. Need to show

~ 1
x2f2dx/£2 f2d§2 —_—
/]R R | | 16’/T2
Write

~ 1 —
[ eifas= o [1Pek a

- = / 2 () da.

Where the last equality is by Plancherel’s formula. The first equality is by

7e) = / F(2)e 29 dz = 2 / F(x)e 27 de = 2mE F(€).

Now by Cauchy-Schwarz inequality,

1 S|
> 2\/ -
LHS > 162 (/Rx(f ) dx) 672

The equality holds when zf = —2B’, this gives the desired result. O

§3.2 Radon transformation

The Fourier transformation has applications in medicine like CT, MR. The mathematics behind
it is “Fourier transformation” onto a plane.
In R?, let w € S? be a unit vector, t € R. Define the plane

P={zcR |z -w=t}.
Essentially ¢ and w is the distance and direction of the plane wrt the origin.

Definition 3.2.1. Let f € S(R3?), define the Radon transformation

R(f)(tw) = fdx.

Py o
i.e. the integral of f on a plane.

Fix w, we can take e1,e3 € R? s.t. {w, e1, ez} forms an orthonormal basis. Then

fdx = f(tw + ure1 + uges) dug dus.
Py R2

Radon transformation has some relations with Fourier transformation.

Theorem 3.2.2 (Central Slice Theorem)
Let r € R, w € S2.

o~

f(Tw)Z/RR(f)(Lw)e*?’””dt.
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Proof.
/ R()(t,w)e ™" dt = / f(tw + urer + usez) dug duge 2™ dt
R R JR2
B / Ftw + ureq + ugeg)e 2Tl tmertuaca) T gy doyy dug
R JR2

_ / f(x)e—%riz‘rw dz.
R3

Where the last equality is a substitution x = tw + uye; + uges. O

Now we hope to rebuild f using the information of R(f). Since

f(=)

[ Feerm=sag
R3

1 [t ~ ,
3 / Flrw)e?™ @ e dr dw
oo JS2

1 o[tee : :
= / / / R(f)(t,w)e 2™ 2 dt - 2™ dp dw.
2 —oco JS2JR

Note that by Fourier transformation of derivatives,

[ RUI w27 dt = = RO R() 1)
R

Therefore )
_ 2 .
fz) = 572 o OER(f)(z - w,w)dw.

By an inverse Fourier transformation. This formula is useful in application since it’s easy to
compute.

84 Sobolev space

Recall that for @ C R, if m(Q) < +o0, we have LP(Q) C LI(Q2) for p > ¢q. We have a sequence of
function spaces,
IL'DI?2.--2L®D>C°D...D(C>.

This gives us the insight that the more derivatives the function has, or the integral of higher
power exists, the better properties it has. Sobolev’s theorem reveals some “commutativity” of this
derivatives and integrals.

Remark 4.0.1 — In this section we won’t state or prove everything strictly, since we didn’t

introduce the distribution, we have to state everything in the language of classical theory.

§4.1 Sobolev space

Let Q C R™ be an open set. For 1 < p < oo, recall that

L”(Q){f: (/Q|f|de>; <+oo}.
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and the norm

T (/ Iflpdar> "

[fllzee = inf{M : [{|f| = M}| = 0}.
We know that LP(Q) is a separable Banach space for 1 < p < oo, while L*(2) is not separable.
Now we’re adding the informations of derivatives.

When p = 400,

Definition 4.1.1 (Sobolev space). First we define the norm

flwer = [ 3 / 107 fP da

|| <K

As usual we would naturally define WP as the functions with finite norm. Clearly C* ¢ Wk,
However, if we do so it’s hard to prove the space is complete, and we don’t know what the other
functions look like.

Note that if ¢ € C§°, by integration by parts,

/aafcpdm: (—l)a/fao‘godx.

Definition 4.1.2 (Weak derivatives). Let f € LP(Q), for all ¢ € C§° we define 9% f to be a linear
operator

0%f(p) := (—1)"‘/ fO%pdx = / 0% fpdux.
Q Q
In some cases, we can realize 0% f as a function s.t. the latter equality holds, i.e. realize this linear
operator as an inner product.

Therefore we’ll use the weak derivatives for the definition of Sobolev space, and denote W(]f P(Q)
as the completion of C§° under the W*? norm. (This is to say 9 f exists and in L?(2), moreover
9% floa =0.)

When p = 2, we also write W*?2 = H* and W§? = HE.

By Plancheral’s equality,

STl = D N0oFI3e = > lmg) 3. = @m)* > Il Fll3.-
|a|=k la|=k || =k |a|=k
So
1117 = > 119 fl72 = / (L€ + -+ PP de ~ 11+ 1) % £
la|<k

Therefore we can define H® space for s € R as
1 1ere = 1L+ 1€1%)% fllza-
We also write H®, the homogenous space as

£l e = 1€l 2

The space H® is a complete Banach space, this is essentially from the completeness of L2. We
can think of H*(Q) as the restriction of H® function on © s.t. and f|a,...,d" f|q = 0. (or more
generally if €2 is not so good, the completion of C§°(£2) function on H*® norm)
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Remark 4.1.3 — If 9Q is a C! manifold, then the restriction definition coincides with the
original definition.

Note that H® = L2 and H® C H?® for s’ > s.

4 N
Theorem 4.1.4 (Sobolev embedding of H?)

When s > 5, H*(R™) can be continuously embedded into L>*(R™), i.e. 3C independent of f
S.t.
[fllee < Clifllas, Vf € H".
n

Moreover, if s — 5 is not an integer,

171 g g < O lges VS € HO(®)
- J

Proof. WLOG 0 < s— %5 < 1. If [z — y| <1, by Fourier transformation,

F(@) - f)] < / 7€) le =€ — 1 dg

n

< ([ e ac)” ( [lerzienee - apag)”
= 11l -2 (/ €172 sin® m(x - y)€d€> g

Note that the integral can be estimated as
R B e e R
1€]>6 lgl<o

Where we take § = |z — y| L. O

Here we take a little time to review.

e The space WP consists of functions whose weak derivatives 9% f are in L? for all a < k.

e The norm is defined as

=

[fllweey = | > [ [0°f|Pda
0<a<k”$

The space W#P(Q) is a Banach space, this is derived from the completeness of L?({2) and
the definition of weak derivatives.

WP () is the completion of C§°(Q) functions under the W*2(Q) norm.
If 9Q € C* (i.e. a C* manifold), then f € WP <= 9°flaq =0, for all a < k — 1.
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Proposition 4.1.5
The smooth functions C*°(9) is dense in W*?(Q).

Sketch of proof. When 2 = R”, this is easy, since we can take an approximation to identity K.,
and fx K. — f.

When 2 is not R™, we can also define convolution on 2 C R™ as follows:

First note that if supp f C Q. = {z € Q: d(x,00) > €}, then f * K, is a function on €.

Therefore if we take a unit decompostion @i, fyg supports on a compact subset of €2, hence
it’s at least e away from 0f).

Thus we can define fyp x K, for each k, and when €, — 0 uniformly, >, for*Kc = >, for =
f. O

§4.1.1 Extensions

Next we discuss the extension of f. Note that if f € W*P(R"), then f|o € W*P?(Q2). The inverse
statement is not true, since the boundary of €2 can get wery complicated.

This question is related to Whitney extension. Given a function f € W*P(Q), we ask whether
f can be extended to g on R™ s.t.

lgllwer < Cllfllwer, gloa=f

This is true when 99 is a C* manifold.

§4.1.2 Restrictions

Another question is about the restriction of functions. When f € C(R"), clearly f(0,2) € C(R"71).
But if f € L*(R"), the function f(0,x) may not be measurable at all.

The question is under what conditions can we take the restrictions and get reasonably good
properties.

The so-called trace theorem gives an answer to this question. When f € H*(R"), s >

f(0,z) € Ho=z(R™1).

%, then
8§4.2 The H°® function space
e In H*(R"™), by Plancherel’s formula,

~

1Fllzze = 1L+ [E%)2 F(E)llzz, Vs €R.
This is equivalent to the map
T:L*R") = HYR"), fe=>F HA+[E*)75f), 520
is an isometry of Banach spaces.
For the case s < 0, think of H*(R™) as the dual space of H~*(R").
e Consider the space H*(£2). When s is an integer, H*(Q2) = W*2((Q).
e When 0 < s < 1, define the H® norm

/() = S (o) ?
1130y = £ 1320 + // » |x_y|n+2s d dy.

This norm will make H*®(Q2) a Banach space.
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e For general s > 0, define

_ 0% f(x) = 0" f(y)?
1 fllzs = Hf||H[sJ(Q)+//QXQ e dz dy.

o At last we define H*(f2) as the dual space of H§(2). (won’t use it in this course)

Recall the embedding theorem of H*®,

4 )
Theorem 4.2.1
When s > 3, we have
[l @®ny < Clf e mny, VS € H*(R™).
If s — 5 is not an integer,
I fllgts-21.05-3y < Cllfllgss V€ HY(R™).
. J

Proof. To prove the first one,

£l < [1Fllze
<N+ 12l - 1+ 1€7) 72
< Cs,n”fHHS(R")'

L2

The second can be proved similarly using Fourier transformation and Holder’s inequality. [
Let fi(z) = f(Az) be a scaling of f.

o [Ifallpe = [[fllLe

o fallge = 10° fallee = A% |1 fll e

o [fllcon = sup LAE=LWL = 33| £ oy

By replacing f to fy in the above theorem we can see why s must be strictly larger than 7.

Theorem 4.2.2
When s > 3, for all f,g € H*(R") we have

£ gllzrs < ClFllze gl e

Proof. By Minkowski’s inequality, (or by Fourier transformation)

1f * gl < Cllfllzllgllze-

For all s > 0, we have

(L+[EP7)* <225 ((1+ [€ =) + (1L + [n]*)®).
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Hence
£l = |1+ €125 f+ |2
/ (14 1€ — n)* F(E — )gtn) dy

< Ol (1 + €Y FE) 2 + -
< Clgllae |l £l sze-

o~

<c| C | [ mramie -

L2

O

Returning to the weak derivatives, since it’s defined by integrals, we can change its value on
any null sets.

The trace theorem tells us that for f € W¥*P?(€), there exists an operator T : f +— T f € LP(9£)
s.t. if f € WFP(Q)NC(Q), then Tf = f|aq, with a bounded LP norm. Note that here we put
some more requirements on f, so this do not contradicts with the fact above.

8§4.3 Sobolev embedding theorem

Earlier we saw a simple embedding theorem of H®, in this section we’ll handle general situations.
First recall that the weak LP space L, is defined as

15, = {f Iz, += sup(ads (f,a)) < +oo}.

Where A(f, @) := m{|f| > a}).
If felLP,

+oo
1712, = p / P A(f,0) da
> [ ipdezana(fa)
[fI>a

Therefore |[f]/zo > [1f]l 5.
Keep in mind that |||,z is NOT a norm.

4 . )

Theorem 4.3.1 (Marcinkiewiz)

Suppose T is a sub-linear operator, i.e. 3C constant s.t.

T(f+ 9 < CUTNI+ T (D), TN =AT(S)].
If T satisfies that
ITfllgzo < Mol fllLeo, 1T fllzzy < Ml fllzes,
then we have
IT fllze < vMg My~ f o

Where 1 <pg < p < p; < +00, and % = 1% + 11)_19, v is a constant.

. J

Proof. WLOG C = 1. We can decompose [ into

I =IXif5a + fXf1<a = f1 + fo-
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It’s clear that f1 € LPo, fy € LP1,
Hence

AT f,20) < AT fr,0) + AT f2,0) < Mg°a™ || frl[ 7oy + M7 o™ || fall T -

[amini, pldozL/‘ou’o*ﬂl/lff| £ de da
>a

= [15 = po) s
= o= p0) 1%
Doing the same thing with the other term and use the fact that
711 =p [ ATS 20020 d(20)
we’ll get the result. O

Recall that the maximal function of f € L!'(R™) is defined as

M()(a) = swp o [ 17w

B>z

In fact this M is a sub-linear operator, since M(f + g) < M(f) + M(g).
Also note that |M(f)|lr= < ||fllLe, and [|[M(f) . By the above theorem we
know

IM(ller < Collfller, 1<p<+o0.

However, in most cases the index of LP° and LP! are not the same on both sides, like F, the
Fourier transformation satisfying || F(f)|lr~ < [|fllz: and | F(f)|lz = || fllr2, we hope to get
IF(H e < [|F(f)||Le. But this is beyond our capability for now.

Let D={z]0< Re(z) < 1}.

Lemma 4.3.2 (Hadamard three lines lemma)
Let f be a bounded analytic function on D, and continuous on D. If

|f(0+ib)| < My, |f(1+1ib)|] < Mp,VbeR.

Then we have

|f(a+ib)| < My~ °M{, Y0<a<1l,beR.
\_ J

Proof. WLOG My, My > 0. (Otherwise it must be zero everywhere)
Let Fe(z) = 6*6(1"’7)2 f( ) . Since F.(z) is continuous on D, analytic on D,

—ea(l—a)—eb? |f(a+lb)|

F, b .
[Fila+ib)| = TR

Consider Dy = D N {|Im(z)] < N}. By analytic property, the maximum and minimum of f
must be acheived at the boundary. Take N large, we can prove F. < 1 on the boundary of Dy.

Therefore F, < 1 for all € > 0 sufficiently small. O

We say a linear operator T, is analytic wrt z, if it maps simple functions to measurable
functions, and [ f(z)(T.g)(z)dz is an analytic function of z on D, and bounded continuous on
D.
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.

Here0<a<1,and%=

[
Theorem 4.3.3 (Stein-Riesz-Thorin)
Let 0 < pg,p < +00, 1 < qo,q1 < 400, T, is an analytic linear operator satisfying

ITiofllao < Mol fllzro, T14ivfllLa < M| fllzes-

Then we have

| Tarin fllza < MgML= f|zo-
i+ l-a 1 _ a l—a

q0 @ P Ppo p1 °

\

.

for%:i—i—l_e

-
Theorem 4.3.4 (Riesz-Thorin)

Let T be a linear operator, if

ITfllLao < Mollfllzeo, T Sfllzar < Mul|fl|ze:

We have Vf € LPo N LPr]

ITflle < MEMT™°|| f|| e

1 _ 6 1-6
Po Pl’a_%+ ql,QE(O,l).

Proof. Take T, =T, by above theorem the conclusion holds for simple functions.

For general f, take simple functions fi s.t.

lim |[f — fillLes = 0.
k—o0

—0

I7(F = fille < ITCF = Fill%uo ITCF = Fi)ll 3o
< (Mol f = frlloro)? (My]|f = frllzen)=? — 0.

.

-
Theorem 4.3.5 (Young's inequality)

Let T be a linear operator defined as
Tf(a) = [ ho.)f)dy
If there exists constant C' s.t.

sup||k(z,-)llr < C,  suplk(,y)llLr < C.
x Yy

Then ||Tf||re < C||f||ze for 1+ % = % + Il),l <p<r,1<gq,r<+oco. (Here r’
When g = r,p = 1, this is the integral version of Minkowski’s inequality.
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Remark 4.3.6 — The relation between p,q,r can be implied by a scaling transformation.
Let kx = k(Az, \y), fa(z) = f(Az). Then ||frllL» = A~ 7 ||f||z», similarly C changes by A=+,

n

ITf||lLa changes by A\™" " a.

When the operator is the convolution operator, i.e. k(z,y) = k(z —y), then Tf = k * f, we
have

1k flla < |EllL-l|f]lze-

When T = F is the Fourier transformation, by Riesz-Thorin interpolation inequality,

p

IFND e < Wl v =170 22
p
Theorem 4.3.7 (Hardy-Littlewood-Sobolev)
Let0<’y<n,1<p<q<+oosatisfyinglf%:%f%. We have

I #1177 ze < Cpgnllfllze.

Proof. WLOG f > 0.
f*|~|‘”=/f(x—y)ly|‘”dy
=/ f(w—y)lyl’”der/ f(@—p)lyl ™ dy
ly|>R

ly|[<R
< 1ol "ol + Y | =)yl dy.
i—o/2 F1R<|y|<2-*R
Note that
ﬁ +oo ﬁ
[owran) ([ Teas) —end
ly|>R R
Also
$ / F—ply 7 dy < 3@ FR) / @ —y)ldy < CR™TM(f).
k—0 /2 FTIR<|y|<27FR k=0 ly|<2=*R

Therefore if we take R s.t. R*™VM(f)(z) = R~ || f| e,

IV _ P 1-B
Pl < ellflunR™ + CRYIM(S) (@) = CMH) @) 71l "
Hence taking L? norm on both sides will yield the result. O

Now we can state the main result:
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4 )
Theorem 4.3.8 (Gagliardo-Nirenberg-Sobolev)
For 1 < p < ¢ < 400, m < n are nonnegative integers. If % — % =0,
[flle < Cpgnlld™ fllze, f € C5°(R").
When ¢ = +o00, m > %, we have
[fllzee < Cpmmr(10™ Fllze + [ fllzr), VS € C5(R™),1 <7 < 4o00.
More generally, when r > n,1 < p < q < 400, except p = 400,17 =n,q < +00,
Iflle < CUIVFllzr + 1 fllze)-
. J

Remark 4.3.9 — Again, the relation between p, ¢, m,n can be derived by scaling.

This theorem states that the regularity of derivatives can be passed to the original function
(with L? replaced by a higher L?).

The second inequailty induces (when r = p)

[fllzee < Clifllwm.r.

Proof of first inequality. Actually we only need to prove the case m = 1, since we can repeatedly
apply m = 1 inequality to get larger m.
When p > 1, since f has compact support,

+oo
cli@i< [ [ 9 =ralaras = [ 95— p)ly= 0 dy = 19514 ][00

Nowbyl—”T_l—l—

=5 and Hardy-Littlewood-Sobolev,

[ flles < CIVfllLe-

1
q

When p = 1, we need to prove

1Al 2 < CUIV L

n—1

When n = 1, it’s trivial; When n = 2,

floy) < / 0af(s,9)|ds,  flay) < / 9, f (x, 0)] dt.

Multiplying these together we’ll get
113 < [ 10:s.0us(w 0] dsdeazay = [ 100l dwdy [10,00.0)]dedy,

Hence the result is true.
For general n = k, we proceed by induction. Let z € R,y € RF~1

JJueai=asas [ [iremia) ([ a$f<s,y>|ds)kl‘ldy

< H [1ourtsias - H [isepla

< VIR H / IV, f (@ y)]

k—1
k—2
L’U

1
L‘Tvy
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O

Proof of second inequality. When m = 1, p > n, let ¢ be a smooth function s.t. ¢(xz) = 1 when
|z] <1, and p(z) = 0 when |z| > 2.

1£(0)] = [fo(0)] < [V(fe) |- [~"1(0)]
_ ‘ [ V@l ay

= V(fe) )y~ dy.
ly|<2

Thus
£ < IV ey~ Dxpyi<all L = CIV(f@)lLe-

Since we have

Vol

IV(FollLe < IVF - @llee + 1 VellLe < IVFlLe + 1L

1_64 1-9
Whereif +q. O

r

In the proof we encountered an inequality that looks like this:

1l zmr < CIV L.

n

This is related to the isoperimetric inequality:
Q"% < Calogl, Qcr™

Which states the relations between the volume of a set and its “surface area”. Of course here we
require the boundary to have good properties so that we can define its “area”.
Another related formula is the Co-area equality. (which we proved as homework in manifold

section)
/Qg(x)|Vu(x)|dac = /_;OO (/u_l(t)g(x) da) dt.

Here o is the measure on the manifold u=!(#).
From this we can prove the equvalence of isoperimetric inequality and Sobolev inequality. As-
: : o n—1 1),
sume Sobolev inequality, let fe — xq, intuitively || fe[| .2, — Q] , and [ [Vfe| = [y [f7' ()] dt —
|0€2|. (later when we learned distributions, we can directly take f = xq.)
Conversely, for f € C3°, let Q = {f > t},00: = {f = t}. Isoperimetric inequality gives

n—1

{f >t} < C|{f =t} By co-area formula again,

C’/Vfdx:C/tZO|{f:t}|dtz/tzo|{f>t}|ndt.

Since
5 ds < OV 1

n—1 t n—1 +OO
Hf > )] s/o I{f>s}|Tds§/0 f > s}

and
n n 1 n n—1 1
/ 17 da = / (f > )7 dt < / (f > 15 OV
n—1Ji>0 n—1 t>0

< CullVSIIz

We’ve shown the equivalence of these two inequality.
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§5 Distribution theory

§5.1 Definitions and motivations

Let © C R™, given a compact set K C £, the function space C3 () is the space of all smooth
functions whose support is in K.

@)= |J R @) =29

KcQ

is the usual compact supported smooth functions in . This space is used as test function space
later.

Definition 5.1.1 (Distributions). The distributions on 2 (also called generalized functions)
is a linear functional on 2(2)

u: 2(Q) = C, ¢ {u,p),
satisfying
o Vo, € P(0), a, B € C we have
(u, ap + ) = a(u, ©) + B (u, ).

e (Continuity) For all compact set K C {2, there exists a nonnegative integer P and constant
C(P, K), such that

[ (u, ) | < C sup [[0%| Lo (k)
lo|<P

Remark 5.1.2 — Recall that for general functionals, the continuity is defined as

lu(@)llz, < Cllolls,
But since Z(12) is not a Banach space, we need to change the norm of ¢ to the stated
one.
If the choice of P does not depend on K, then the minimal such P is called the order of u.
Denote 2'(€2) the set of distributions on €. It’s the dual space of 2().
Definition 5.1.3 (Limits). Let u,, € 2'(2), we say u,, converges to u if

lim (un, ) = (u, ), Vo € 2(Q).

n—oo

. 2’
We write u,, — u.

Example 5.1.4 (Dirac function)

This is one of the motivations to develop theory of distributions.
For all a € Q, define 6, € 2'(Q), Vo € 2(Q2) we have (04, 9) = ¢(a). Since

| (Ga, ) | = [p(@)] < [l (k)

so ¢, is a distribution of order 0.
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Example 5.1.5 (Locally integrable functions)
For all f € L}, (), define the functional T} to be

loc
Ty : 2(Q) — C, <p»—>/f<,0.
Q

Since | [, fol < I fllrx)ll@ll=(x), take C = || fllL1(x) and P = 0, we see that Ty is a
distribution of order 0, thus classical functions can be viewed as distributions.
Moreover f +— T} is injective (up to a.e. equality).

Example 5.1.6
Take ¢(x) € 2(R") s.t.

¢(z)dx = 1.
]Rn
For € > 0, define

e(x) = e "P(ue™")

It is an approximation to identity, we have ¢, z, So-

Ges9) = [ em0aepla)do = [ s(o)p(ez) da - o(0)

R

Example 5.1.7 (Radon measure)

Let p be a measure on (Q, B(2)). If for every compact set K C Q, u(K) < +oo, we say p is
a Radon measure.
For any Radon measure pu, define a distribution

T, : Vo € 2(Q), <Tu,<p>=/ﬂ<pdu-

Since for any K C Q, ¢ € C(Q),

| (T ) | < (B |pll Lo (x6)-

T, is a distribution of order 0.
In fact all the distributions of order 0 are (signed) Radon measures.
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Example 5.1.8

Note that L ¢ L}, (R), so we can’t realize < as a distribution directly.
However, we can define
1 Feo —o(—
<Pv, <,0> = / 780(30 (=) dzx.
x 0 X
Called the principal value distribution of %
“+o00 _ _ “+o00 1
/ p@) (=2 4 / / o (t) dt dz
0 0 =i

x
Thus pv% is a distribution of order at most 1. In fact its order is 1.

< CE)¢ | Lo k)

§5.2 Derivatives of distributions
Definition 5.2.1. Let u € 2'(2), « is a multiple index. Define

(0% u,0) = (=1)1* (u,0%9) .

We need to check that 0%u is a distribution. For any compact set K, ¢ € C3 (), then
0% € CP(Q) as well.

(0%, @) | = | {u,0%) | < C sup |0°0%¢| )y < C  sup [|0°¢| = (x)-
B1<P 181< P+

Thus 0%u is a distribution of order at most k + |«|, where k is the order of w.

Example 5.2.2 (Heaviside function)

Consider the locally integrable function
H(z) = Xa>0

as a distribution, it has a derivative H'(x) = d¢ since for ¢ € Z(R),

+oo
(H' ) = — (H,¢') = — / H(z)¢/(z) do = — / o (z) dz = (0).

Another example is pv1 = (log|x|)".
Since log |z| € L} (R), by definition,

loc

+oo
(g |2])', ) = — (log |z, ¢' () = — / log |zl () dz = — / log 2 (¢) + ¢/ (—)) da

If we view this as a generalized Riemann integral, using integration by parts,

(o ol ) =~ oga(o(o) ~ ()|~ + [ e o), <p190> |
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§5.3 C*°(Q2)-module structure of distributions

Now we’ve seen that distributions can perform addition and differentiation, but we can’t simply
define the multiplication of distributions.
since 2'(Q2) is the dual space of C§°(Q), for f € C®(Q), u € 2'(Q), we can define the
multiplication fu as
(fu,0) = (u, fe) .
if u is a locally integrable function, this product coincides with the normal multiplication of func-
tions.

Since VK, 3P, C, s.t.
[(fu,0) | <C Y 0% (fo)lpex) < C-C(fi PK) DY [10% ] poe (i)

lo|<P lo|<P

fu is indeed a distribution.

Proposition 5.3.1 (Leibniz's law)

A(fu) = Ouf + dfu.

Proof.
<a(fu)a90> = <fu78%0> = - <U,f8<p> = - <u78(f90) - af¢> = <auf + 8fu730> .

Example 5.3.2
z-pvE =1 since Vp € 2(),

<x ~pvi,¢> = <p1<p> = /O+°° zole) + 77 g, /O+Oo(¢(w)+so(—x))dw — (L,¢).

X

Next we’ll study the variable substitution of distributions.

Recall that in differential manifolds, let ® : 2, — 5 be a differential homeomorphism, then it
induces a pushforward of tangent spaces ®, : Ty — T, while in cotangent space (or 1-forms)
it induces a pullback ®* : T*Qy — T*Q;.

Let u; € 2'(01), p1 € 2(21), and & : Q; — Q9 a smooth map. Formally we can write

o) = [m@p@)ds = [u@ @)@ )i @) = [0 mane @)l d
Thus we can define a new distribution “uo ®~1” as
<u 0®d 7 g o (I)_1|Jq>—1|> = (u,p1).
Hence the pushforward and pullback is defined as
(Puur, p2) = (u1, 02 0 O(z)|Jo|(2))

(D uz, 1) = (u2, 010 @7 (y)|Jo-1](y))
Here we won’t bother to check they are indeed distributions because of the complicated computa-
tions.
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Example 5.3.3
Let zg € Q1, yo € Qa, ®(29) = yo, then

(I)*(Syo = |J¢(‘r0)|_1610'

f . )
Proposition 5.3.4 (Chain rule)
8]'((1)*@&2) = Zaj@k . <I>*8ku2
k=1
. J
Proof. For all p € C§° (),
<Z 8j<1>k<I>*8kuQ, §0> = Z (@*5ku2, 8J(I>k<p>
k=1 k=1
=3 (Ortuz, (905 - 9) 0 @7 Tga )
k=1
Z<u2, (0;P 0 @~ ! (Lpo(I)_l)|Jq>1|)>
k=1
Note that
(’)(I)k
Z e (3 @ @) ) =0
Since Vg € C3°(£22), by Stokes formula substitution and integration by parts,
0 0P 0P
0= [ rtgomar= [ Zakg—’“dx -/ S g ( (@)l a 2 ()] )
1 1951 k=1 Qs k=1
Continuing the computation,
== (u2,0;P 0P Jp1|- 5—(po® )
k=1 Oy
n -1
=5 (®up, 0,0 - a‘p;q’oq>>
—1 Yk
= (0; P ug, ¢
O

Stokes formula can also be generalized for distributions.
Let v(z) = (v1(x),...,vn(x)) be the outer normal unit vector of 92, o the measure on 0.

Stokes formula says
Do /
dz = pv;do.
/ Ox; oo’

Hence the distribution version is
(xa,0j¢) = — (Oixa, ¥) -
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Theorem 5.3.5

Let © be a smooth region, v(x) is the unit outer normal vector, o is the measure on 9€2. Then
as distributions, we have
Oixq = —v;do, Vxq=-vdo.

In one dimensional version, f(z) integrable on (a,b),

F(z) = / f(t)dte.
then F'(z) = f(z), a.e. (Since absolute continuity). As distributions we have

Fl(2)=f(z) €2

Theorem 5.3.6

Given a distribution u € 2'((a,b)). If the derivative v’ = 0 as a distribution, then v = c is a
constant.

Proof. Since
<ul7 90> = - <u7 410/> = Oa

note that ff ¢ dz =0, for all Y € Z((a,b)), let
b
o) = () - < [ ow dy> A@),

where A\(z) € Z((a,b)) and f;)\dx =1.
Thus G(z) = [ g(y) dy € C5°((a,b)). This gives

b
0= (u,G'(x)) = <u,1/)(96) - /\(fﬂ)/ P(y) dy>

b
— (u,) = / By) dy (u, A) = ((u, X))

This means u = (u, A) is a constant distribution. O

In higher dimensional cases, we only consider @ = R™ here. For ¢ € C5°(R"), there exists
®; € C§° and x € CF°(R) s.t.

s cen) =001+ x(w1) [ Olswarwn)ds, [ x(@)de=1.
R

Since fR é(s,2,...,7,)ds is a function in R"~1, we can use induction on n.
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§5.4 Supports of distributions

For a function f, supp f := {f(x) # 0} is the closure of the nonzero points. But this can’t be
generalized to distributions, so if we rephrase this as

supp f = ({z | 3V, 3 2, s.t. f(2)]y, = 0})°
we can do the same for distributions:
Definition 5.4.1 (Support). Let u be a distribution on £,
suppu = Q\{z € Q| IV, s.t. (u,) =0,V € D(V,)}.

here V,, is an open neighborhood of .
If supp(u) is compact, we say u is a compact supported distribution. Let &(€2) denote all
the distributions with compact support.

\
Theorem 5.4.2 (Unit decomposition)
Let K C R™ be a compact set, {Ui,...,Un} is an open covering of K. Then Iy; € C5°(U;)
S.t.
o 0<y;(z) <L
e There exists an open set V O K, such that Vo € V,
xi(z) +---+xn(x) =1.
. J

§5.5 Convolutions of distributions

For a smooth function f, when u is a function, we have

(ux f,p // z—y)f dxdyf// x+y)dxdy< /f x)dx>

Therefore let Rf(z) := f(—x) be the reflection operator, we can define
(ux f,0) = (u, Rf * @)

for general distributions u.
We need to ensure f is integrable and has compact support, so that Rf * ¢ € C§°(R"™).
Since

[{ux foo) | < C D 10 ((RF) * )| (upp(R 1) w)

lal<P

<C YIRS # 0%l o (supp(R )

la|<P

<C Z ||Rf||L1||aa<pHL°°(suppcp)~

la|<P

The distribution v * f is well-defined.
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Theorem 5.5.1

Let f € C§°(R™), then u * f as a distribution is equivalent to the smooth function u(R7f)
w.r.t. x.
Here 7, is the translation operator.

Proof. First we prove that u(f(z —y)) is a smooth function of .
For the continuity, u(f(zo —y)) —u(f(z —y)) = u(f(zo —y) — f(x —y)) = 0 when = — zo

from the continuity of distributions.

u(f(zottv—y)—f(z—y))

7 = “(f(%HU_y)_f(w_y)) — u(0yf(zg —y)). Hence it is

The derivative is ;

indeed smooth.
Secondly, we need to prove (u * f, ) = (W(R7.f), ¢).

(W, Rf %) = u ( J®R)w - a)eta) dx)

—o( [ Rrus) et ac)

Now by the definition of Riemann integrals, for all € > 0, 3 a partition A; s.t. the finite sum
approaches the integral.

Since u is commutative with finite sums, and u has continuity as operators, so u is commutative
with integrals. O

Let ¢. be an approximation to identity, then as distributions

@/
ux e —>u <= (ux*de,p) = (U, Roe * @) — (u, ).
This means that smooth functions are dense in distributions.

Definition 5.5.2 (Convolution of distributions). Let u € 2'(R™), ¢ € &'(R™). Define u * ¢ as
(uxec, @)= (u,Rexp).
Where (Re, p) = (¢, Ry) is the reflection of distributions.

Proof. For all K, 3C, P s.t.
| (w,0) | <C Y 10" poe x0)-

la|<P

Let L := supp Re, then 3C; and P; s.t.

[{(Re,@) | < C1 Y 1107l ey

la|<Py
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Hence

[(uxc,p)| = [(u,Rex )|

<C Y 0%(Rex 9) o (supp(Rese)
|| <P

<C 3 |Rex 0%l

la<P|

=C Y [Re(0¢(z — )|l

la|<P

< Y lIC sup [10°0%0(x — )| Lol ee
|a| <P |B]1< Py

<cC Y [0°0%0(2) |l (x)-

|| <P,|B|<Py

Example 5.5.3 (Translation operator)

Given a distribution u, define T, u as
(Tat, ) = (U, T-ap) -
Hence u x §, = 7_4u.
(uxda, ) = (U, 00 % @) = (u, p(x + a)) = (U, Tapp) .

Note that in fact 0, = 7_409, this is a little surprising.

Proposition 5.5.4
Let u € 2'(R™), c € &'(R™),

e supp(u * ¢) C suppu -+ supp c.

e Convolution is commutative with derivatives,

O%(uxc)=0%xc=ux*d%.

\- J

Proof. Since {u * ¢, ) = (u, Rc * @),
supp ¢ N (supp ¢ + suppu) =) = supp(Rc* ) Nsuppu =0 = (u, Rec* @) = 0.

We get the desired.
For the second one, just compute

(0% (uxc),p) = (uxe,0%) (1)1 = (0, Rex o) (=1)1* = (1,8 (Re x ) (1),
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Proposition 5.5.5 (Commutativity of convolutions)

Let ¢, co be distributions with compact support, then ¢; * cog = ¢ * ¢1.

Proof. Let x. = ¢ "x(xe~!) be an approximation to identity, then lim. g c; * x. = ¢;. Hence

(c1 % Xe, Rea x ) = (Rea % @, ¢1 % Xe)
= (Rea, (c1 % xe) * Rep)
= (c2, R((e1 * xe) * Rep))
= (¢, (Rey * Rxe) * )
= (co, Rer * (Rxe * @) = {ca x c1, Rxe * @) -
Where the last but second equality used the associativity of convolution:
Let u € 2'(R™), f,g € Z(R™). We have

((ux f)*xg,0) = (ux* f,Rg*p)
= (u,Rf * (Rg * ¢))
=(ux(fxg),0).

O

\
Theorem 5.5.6 (Continuity of convolutions)

Let ¢, € &(R™), there exists a compact set K, such that supper, C K. Let uy € 2'(R™). If
there exists ¢ and u s.t.

2’ 174
Cp —> C, U —> U.
Then
' 2’
Uk Cp —> UKC, Up*C—> U*C.
\§ J
Remark 5.5.7 — Note that in general we can’t write uy * ci 2) u * ¢, due to the fact that

uy, doesn’t have compact supports.

Proof. Write
(uk ¢, ) = (ug, Rex ) = (u, Rex @) = (uxc,9).
Hence the second limit holds.
The first one is because
(u* ey ) = (u, Reg * ©)
We need to show that Rcy * ¢ — Rc * ¢ here. This is a little annoying, so we take a different

approach.
Let ¢ be a truncation function s.t. ¥» =1 on suppp — K. Then

(u, Reg * @) = (u, Y Reg * P) = (uph, Reg * o) = () * ek, p) = (e * (uph), ) — (c* (up), p) .

’

Hence u* ¢, — uxc. O
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Corollary 5.5.8 (Associativity of convolutions)
Let u € 2'(R™), ¢1,¢0 € &' (R™).

(uxcy)*ca =ux*(cy*ca).

Proof. When c1,co € 2(R™), we already proved it.
When ¢; = f € Z(R™), using the continuity of convolutions,

(uxecr)* f=lim(ux(c1xxe))* f=limux*((c1 % xe) * f) =ux(c1 % f)
e—=0 e—=0
Hence for general cases,
(uxcy)*cg = il_r%(u % c1) * (Co % Xe)
= gl_r}(l)u % (€1 % (c2 % Xe))
= lim u * ((¢1 * c2) * Xe)

e—0

=ux* (¢ % ¢2)

Theorem 5.5.9
Let ¢ be a distribution with compact support, f € C°(R™). Then f x ¢ € C*°(R") and

(fxc)(z) = (e, f(x =)

Proof. Let x be a truncation s.t. x(z) =1 for |z| <1 and supp x C {|z| < 2}.
Define X0 =X, X/C(x) = X(Q_kx) - X(2_k+1x)7 then

D xk(x) =1, suppxk(w) C {271 <o <281}
This step is to find a unit decomposition which is locally finite. Thus

(f*e o) = <<fok>*c,s0> <fok7720*<p>
k=0

:Z<ka,Rc*<P>

k=0
=Y () k) = lex (Fxn),
k=0 k=0

We are able to put the summation outside the inner product since it’s actually a finite sum (c has
compact support).

Therefore -

f*c—Zc* Fxn) = _le,(fxu)@—y) = (e, flz—y)).
k=0

k=0
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Definition 5.5.10 (Convolutable sets). Let F;, F» be closed set in R™, if VR > 0, 3R’ > 0 s.t.
Vo, € Fl,xg c FQ,
|Z‘1 —l—l‘gl <R = ‘$1| < R/, |332| < R

Then we say F} and F5 are convolutable. We can also define the same thing for a series of closed
sets.

Lemma 5.5.11
Closed sets Fi, Fy are convolutable —> F + F5 is closed.

Proof. xy + yr converges —> x + yr bounded, thus z, yi are both bounded, there exists a
subsequence which is convergent, so F; + F5 must be closed. O

Example 5.5.12
The following sets are convolutable:

e F is closed, Fy is compact.
o The sets {[z;, +00)}.
e In the time-space R'*3, the solid future light cone:
Cr = {(t,2) R |t > Jo]}
and the future of the plane t = T
Ri32 = {(t,x) e R'"*? |t > T}

are convolutable.

These sets are related to the wave equation in physics.

4 . )
Proposition 5.5.13

Let u,v € 2'(R™), suppu and supp v are convolutable, then we can define the convolution as
follows.
Let x be truncation function s.t. xx(x) =1 for all |x| < k, and supp xx C {|z| < k+ 1}.

(uxv,p) = lim ((uxk)* (vxk),¢)-
\_ J

Proof. First we prove the limit exists.
For a fixed ¢, we claim that there exists N > 0 s.t.

((uxn) * (vxk), @) = ((wxa) * (vx1), ), Yk, 1> N.

This is because if we look at the difference

(e = x0)u* (xxv), 0) =0 <= supp(p) Nsupp((xr — x1)u * (xxv)) = 0.
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Otherwise if 2 € supp(xx — x1)u, ¥ € Supp xxv, & + y € supp p, assume that supp ¢ C {|z| < R},
then |z +y| < R = |z|,|ly| < R.

But |z| > min{k, [}, contradiction!

Next we prove that this limit is independent of the choice of xx. The proof is essentially the
same, if we replace x; with x}.

At last, u* v is a distribution since for any compact set K, let N > 0 s.t. K C {|Jz| < N}. For
o€ CERY),

(wsv,0) = ((xaw) * (xnv), @) <C Y 1[0%] Lo (x)-
la|<P

Here we omitted some bothering details. O

4 o
Proposition 5.5.14

Let u,v,w € 2'(R™), supp u, supp v, supp w are convolutable, « is any multi-index.
e supp(u * v) C suppu + supp v.
® UKV =1UxuU.
o ux(vxw) = (u*xv)*w.

o 0%uxv)=0%*v=mux*d.

§6 Differential Equations

Let
P= Y a(@)0”:7'(Q) = 2'(9Q). (aa € C®(Q))

la|<m

It is a linear differential operator of degree m. If a, are constants, we call P to be constant
coefficient.
If a, = 0 for every |a| < m, we say P is homogenous.

Definition 6.0.1. For a differential operator P, we can define its adjoint operator

Py = Z (=D)1% (@ (z)u).
o] <m

Then (Pu, p) = (u, P*p).

Definition 6.0.2. Given a constant coefficient linear differential operator P on R”, if the distri-
bution E € 2'(2) satisfies
P(E) =y,

we say F is a basic solution.
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Example 6.0.3

The Laplace operator on R™ is

"L 92 1 y
,7

=1 o

the latter one is the general form on a Riemann manifold, and we do not require it in this
course.
The basic solution of A is

1
2—10g|x\, n=2
i
B(z) = 1 1
(2 —=n)|Sm | |2

where |S™"1| is the surface area of S"~1 in R™.

Proof. When x # 0, AE = 0. This follows from the polar form of the Laplace operator:
—1 1
A=08,+2=0,+ S Ag.
r r

Then AE = (0,, + »18,)E(|z|) = 0, which we won’t check it here. O

Example 6.0.4
The heat operator 9; — A on R x R™ has basic solution

H(t) _1e2

—e At
(4nt)=

E(t,z) =

Here H(t) is Heaviside function.

Proof. For all ¢ € C§°(R x R™),
(Ot — A)VE(L,2), 0) = — / Bt 2)0p dt da — / EApdtds
0 R 0 Rn

= — lim / 0:(Eyp) — 0:Ep + AEpdtdx
£ Rn

e—0
t z|? o0
= — lim al ’xzef% T
e=0 Jgn (47t)2 €
2
= lim Me“I‘z dz = ¢(0,0).

e—=0 Jgrn T2

If F is the basic solution of P, we have
P(f+E)=f

that’s why it’s called the basic solution.
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§6.1 Solutions of Laplace equation

Let E be the basic solution of A.

Lemma 6.1.1
If u € 2’(R™) has support inside a compact set K, then F * u is smooth on K°.

Proof. Let x(z) be a truncation, y. = x(¢~1(x)).
Since E is a smooth function on R\ {0}, in a neighborhood of p € K¢, apply the truncation
and we're done since the convolution of a smooth function is also smooth. O

Lemma 6.1.2
Let u be a distribution with compact support. If Au = 0, then u = 0.

Proof. For all f € C*,

0:<Au’f>:<Aquf> = <U7A(Xf)>:<U,AXf+2VXVf—l—fo> = <’LL,Af>

Where x is a truncation with x|suppus = 1.
So for all ¢ € C°(R™), p* E € C,

0= (u,Alp* E)) = (u,9) -

O

Theorem 6.1.3

Let u be a harmonic distribution on R™, i.e. Au = 0, then u is a smooth function.
Proof. For all constants K > 0, take x(x) which is 1 on {|z| < K}.

Consider

A(xu) = Axu +2VxVu = f.

Here f, is a compact supported distribution.

TODO.. O

§6.2 The basic solution of wave operator

Another important differential operator in physics is the wave operator. In the time-space R'*",
t € R, x € R". The metric is defined as

m = —dt? + dz?

This is known as Lorentz Geometry (The one we’re familiar with is called Riemann geometry).
In Riemann geometry, the Laplace operator is

1

Ag = \/éai(g” V@)
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and its counterpart in Lorentz geometry is the wave operator
O=-9; +A,

Define a distribution on R:
7t

m, Ty = maX{O,.T},a > —1.

X4 =
Note that here we have
1

a—
a—1 @ _ ‘T+ a—1

T Ta)  Ta-1

Hence we can define x4 for a < —1 using derivatives.

4 )

Lemma 6.2.1

Let k£ be a nonnegative integer, we have

_ k—1 g1 1 _1y\ (k)
X+k:6(() )7 X4 2 :7($+2) .
T

Here u(*) means the k-th derivative of w. .

Proof. By definition X.T.l = H'(x) = g, and x> = xiéﬁ O

Definition 6.2.2. We say E is a future basic solution of wave equation, if

e E is a distribution on R'*”, such that

DE+ = O

e The support of E lies inside the light cone
supp(Ey) CA{(t,z) | 0 < [z <t}

Recall that the pullback of distribution:

Definition 6.2.3 (Pullbacks). Let Q3 € R"™™ Q5 C R™. Let ¢ : Q1 — Qs be a smooth map
with rank n, then for any u € 2'(23), we define the pullback ¢*u as follows:
Define & : Ql — QQ X Rm7
(I)(:L" y) = (QO(IC, y)a y)

For ¢ € C§°(R™*™), define
(u, 6, ) = <u o(z,y) dy>

i.e. we can view u as a distribution on R?™™. Thus we can define

Rm™

o'u= B ulz,y).

Applying the chain rule,

n+m n
0;(u) = > Ohud;®p = _ Opud;py.
k=1 k=1
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[
Proposition 6.2.4 (Basic solution of wave operator)

Remark 6.2.5 — 1In the expression, H(t) denotes it’s the “future” part, the rest is a pullback
of a distribution:
0 :RY™ SR, ot z) =t2 — |z,

_1l-mn _1l-n
P'xy 7 =xg 2 (=2
However, ¢ is not full rank at 0, thus it requires extreme caution and we won’t dive too deep
into this issue.

Proof. Let s = t? — |z|?, we have dt =

1 ds,
24/ s+|z|?

<x1"51 (S)vcp(t,l')> = <xln2’1(8), % /n @(\/\/?wdx>

When s > 0, this is well-defined; When s = 0, let ¢(s) be the function on the right, we have ¥(s)
is CF at s = 0 with 2k + 1 < n. (Since dpb(s) = [ @(s + |22])7F~7 = || =2+ 1)

Therefore we can define E; in R™.

Inside the light cone,

_n—1 _l4n _l4n
O(G T =) = =0 (2607 @~ 1al) = 0 (2007 7 (22— |o))
_l4n _34n
=-2x; 7 (7 |af") - 4tx, 7 (7 - [2f)

14+n

- _34n
—2nxy ® (= [af’) +daixy T (8 - |zf?)

14+n

= _34n
==2(n+1)xy 7 (£ —|2[*) =40 — [z)xy (& —|2[?)

=0.
. a _ 931+1 _ a+1
Since - x4 = w7y = (@ + x4

Now we have OJE supports on the origin,

— OB, = Y Cad“.
o <N

Note that E is a homogenous distribution, specifically
Ei(\z) = A7 By ().

This implies (OF,, (M, Ax)) = (OF,, ¢(t,x)). But (0%0g, p(At, \x)) = (—1)1*I\e152¢(0,0), view
it as a polynomial of A\, we must have JE, = Cdy.

At last we need to compute C, which should be done by find a suitable test function and
compute the inner product. But here we’ll just do this formally. (Actually I didn’t take notes of
the computation since it’s too complicated) O

Below we state the solution of wave equation, which we won’t prove in this course.
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4 . )
Proposition 6.2.6 (Kirchhoff's formula)

The wave equation

D¢ = 07 ¢(0,$) = 07 8@(0,%) = d)l(m)

has solution

5/% ¢1(y) dy, n=1

o /1d 2
P(t,r) = 1 \ora

t"_Z/ Pz +tw)dw |, n>3,2{n
Jw]=1

_ + ty)
t”l/ Wdy), n>22|n.
( lyl<1 /1 —[y|?

§7 Fourier transformations of distributions

§7.1 Tempered distributions

Like the smooth functions, f € C§°(R") — fé C§°(R™), we defined a different space S(R™) for
Fourier transformations.
So we’ll also define a space for distributions that is closed under Fourier transformations. For

p > 1, denote

Np(p)= > sup [¢*07y].
lal,181<p *F

Definition 7.1.1. We say u is a tempered distribution on R", if u is a linear map from S(R"™)
to R, such that there exists C' and p,

Write this space as S’ (R™).
Since C3°(R™) C S(R™), Z'(R™) D S"(R™).

Given u € S'(R™) and multi-index a, 3, the distributions 9%u, x°u € S'(R") as well. But for a
function f larger than polynomials (e.g. €*), fu may not lie in S'(R™).
This means that u cannot increase faster than polynomials, that’s why it is called “slowly
increasing”.
Check:
(0w, 0) | = | (1,0°9) | < CN(0°¢) < ONps ().

The convergence in S’ is defined as

(" Sy = klim (ug, @) = (u, )y, Yo e SR").
— 00
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Example 7.1.2

Let 1 < p < 400, the functions in LP are tempered distributions.
Take k s.t. kp’ > n.

< [ Fllzelloll 2o

< fllze @+ |2) 7% Lo Na ()
< CNi(yp)

(F )| = ‘/fwdx

Example 7.1.3
Distributions with compact support are tempered. Let K = supp u.

| (u,0) | =1 (u,x0) | < C D 10 (x0) | Lo ()

la|<p

<C Z 0%l Lo () < CNp(ep).

la|<p

Example 7.1.4

The distribution pv% is tempered. Just split the integral to [0, 1] and (1,400), then control
each part by Ni(p).

Example 7.1.5

Exponential increasing distributions can also be tempered. Let u = ie®e” = (eiew)’ . Since
e'® has norm 1, it is tempered = wu as its derivative is also tempered.

§7.2 Fourier transformations
Definition 7.2.1. Let v € S’(R"), for all ¢ € S(R™), define

(@ 0) = (u,@), (F ' (u),¢)=(u,F'(¢)).

Recall that [ fg dz = [ fgdz for rapidly decreasing functions, so this coincides with the Fourier
transformations of functions.
Since

(@) | = (@) | SONy(@)=C Y suplerd’(

lal;|18]<p

o) P P
<CY J2*0%0) 1 < CNpinia ().

The Fourier transformation u € S’(R™).
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4 )
Theorem 7.2.2
The Fourier transformation
F: S R") — S"(R™)
is a continuous linear isomorphism. Where the continuity means if wuy i> u, then Uy S—,> u.
Moreover,
Ohu = 27Tfkia, 2mxLu = 10,1, ./_'.71(7/1\) = u.
. J
Example 7.2.3
The dirac function &y satisfies 30 =1.
For all @ € R™ and multi-index «, we have
55, = (2mi€)™8, = (2mif)*e2miat,
Thus a = 0 yields
— (=Dl
g5 = ( ) 0-
(2mi)e
In particular, 1= 4.
o A
Proposition 7.2.4
Let u € S’(R™) be harmonic, i.e. Au = 0, then u must be a polynomial.
. J
Proof. By Fourier transformation,
Au=21igfi=0 = [¢a=0.
Thus u supports on the origin.
u= Z Cn0%9 = w is a polynomial.
la|<N
O

Example 7.2.5

The Fourier transformation of pv%.

—

1 1
x-pv— =1 = x-pv— = dp.
7 7

Hence ,
) 1 d 1 . 1 )
il pv—| =621 = —pv— = —27idy = pv— = —2miH(z) + C.
T d¢" =z T
Since pv is an odd distribution, i.e. (u,p(—z)) = — (u, p(x)), we have C = mi.

This tells us H(¢) = 160 — s=pvi.
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